如何构建AI驱动型智能服务?

简介:

人工智能(简称AI)驱动型智能服务将把当下各类前沿技术(例如区块链)、物联网以及客户体验因素结合起来——而其未来的发展方向则必然以信任协调为基础。

如何构建AI驱动型智能服务?

机器学习、深度学习、自然语言处理以及认知计算的结合将彻底改变人类与机器之间的交互方式。AI驱动型智能服务将学会感知人类身处的周遭环境、根据其以往行动推断个人喜好,并巧妙地通过日常生活对人类加以引导。事实上,对于此类目标的追求将成为当下十年乃至未来最为重要的转变,并使得AI驱动型智能服务被引入各个行业以及各类业务流程当中。

对于企业而言,AI驱动型智能服务则将深刻影响未来的工作流、物联网服务、客户体验以及同步分类帐(即区块链技术)。业务的成功将以AI处理结果为前提(详见图一)。一旦结果建立完成,企业即可规划AI驱动型智能服务,并利用其以规模化方式实现编排、自动化与民主化个性体验交付。

七类AI成果

如何构建AI驱动型智能服务? 

AI的颠覆性能力源自其速度、精确性以及强化人类判断的能力。我们可以通过以下七类成果了解AI项目所能够实现的具体价值:

1.感知并描述当前正在发生的事态。第一类成果能够同以往的手动编程方案一样描述周遭背景。

2.向你通知你所需了解的情况。通知内容可通过警报、工作流、提醒器以及其它信号加以呈现,并经由手动输入及学习等方式交付额外信息。

3.提供行动建议根据以往行动提供建议,同时利用权重属性、决策管理以及机器学习随时间推移进行建议修订。

4.自动执行重复工作。随着机器学习不断发展成熟,自动化的实用性也将更上一层楼。

5.提供预测以启发合理预期。要进行预测,我们首先需要建立起深度学习与神经网络,并利用其对行为进行预测与测试。

6.预防负面结果。利用认知推理机制发现潜在威胁。

7.态势感知提供当前重要信息。态势感知将进一步模拟人类在制定决策方面的能力。

AI驱动型智能服务的实现,必须以信任为基础

如何构建AI驱动型智能服务?

由于AI驱动型智能服务必须将决策制定责任指派给各原子驱动智能服务,因此任何AI驱动型智能服务的实现基础皆为信任。下面,我们将探讨AI驱动型智能服务信任协调体系中的五大关键组成部分。

1.配合AI,利用数据化足迹与数据出建立匿名与料。每一个人、设备或者网络都会提供部分信息。这种数字化足迹或产出可能源自面部分析、网络IP地址甚至是步态采集。利用AI与认知推理,系统将能够分析其中的模式并将其与身份关联起来。这意味着AI服务将可在不同情景之下识别并认出对应个人。

2.渲染式体验使交互更为自然。情景、内容、协作与频道共同成为AI驱动型服务交付渲染式独特体验的基础。这类服务将利用地理位置、时间段、天气、心跳率甚至是个人感受等因素作为情景属性,同时结合服务自身所掌握的对象身份与偏好,旨在改进相关性交交付更适合的内容。感知与响应机制将通过对话与文本框的形式实现参与者同机器间的协作。频道则包括各类具体交互点,例如移动、社交、信息亭以及个人等等。其目标在于根据身份提供自然的用户体验。

3.大规模个性化数字服务交付。以规模化方式实现预测分析、催化条件以及选择。预测分析允许客户获得提前预判的能力。催化条件则负责响应的交付或者触发。每位个人或设备都将拥有自己的情景体验,具体取决于身份、历史偏好以及当前需求。从自行选择到情景驱动型选择,再到多选择变量测试,AI系统将令选择拥有更为理想的满意度水平。

4.价值交换成就信任协调 采取行动之后,价值交换即可以交易方式进行。货币、非货币与共识是三种常见的价值交换形式。虽然货币交换也许最为人们所熟知,但非货币价值交换(包括认同、访问与影响)通常也能够带来令人瞩目的价值形式。另外,简单的一致性协商或者协议也能够在患者治疗方案或者土地所有权归属等层面实现价值交换。

5.步调与反馈值得关注AI支持型机器学亦然。在机器学习与其它AI工具的支持之下,智能服务开始考虑交付的步调问题:一次性、临时、重复、基于订阅以及阈值驱动型机制皆在其中。利用机器学习技术,系统将了解到智能服务的具体交付方式,并将其运用于未来的交互当中。

总结陈词:AI带来的强化效果

担心机器人统治世界确实有些多虑。事实上,成功的AI驱动型智能服务将强化人类智能——正如机器强化人类的物理体能一样。AI驱动型智能服务在定义同步分类帐技术(即区块链)、物联网、客户体验以及未来工作方式的商业模式当中扮演着关键性角色。由此实现的错误率降低、决策速度提升、需求信号识别、结果预测以及“灾难”预防等能力也必将得到越来越多人们的认可。

原文发布时间为:2017-9-7


本文作者:杨昀煦 


本文来自云栖社区合作伙伴至顶网,了解相关信息可以关注至顶网。

 

目录
打赏
0
0
0
0
355
分享
相关文章
解锁AI潜力:让开源模型在私有环境绽放——手把手教你搭建专属智能服务,保障数据安全与性能优化的秘密攻略
【10月更文挑战第8天】本文介绍了如何将开源的机器学习模型(如TensorFlow下的MobileNet)进行私有化部署,包括环境准备、模型获取与转换、启动TensorFlow Serving服务及验证部署效果等步骤,适用于希望保护用户数据并优化服务性能的企业。
220 4
瓴羊One·客服与AI大模型技术联合打造智能服务新体验
瓴羊One·客服与AI大模型技术联合打造智能服务新体验
267 0
36.7K star!拖拽构建AI流程,这个开源LLM应用框架绝了!
`Flowise` 是一款革命性的低代码LLM应用构建工具,开发者通过可视化拖拽界面,就能快速搭建基于大语言模型的智能工作流。该项目在GitHub上线不到1年就斩获**36.7K星标**,被开发者誉为"AI时代的乐高积木"。
AI职场突围战:夸克应用+生成式人工智能认证,驱动“打工人”核心竞争力!
在AI浪潮推动下,生成式人工智能(GAI)成为职场必备工具。文中对比了夸克、豆包、DeepSeek和元宝四大AI应用,夸克以“超级入口”定位脱颖而出。同时,GAI认证为职场人士提供系统学习平台,与夸克结合助力职业发展。文章还探讨了职场人士如何通过加强学习、关注技术趋势及培养合规意识,在AI时代把握机遇。
AI-ClothingTryOn:服装店老板连夜下架试衣间!基于Gemini开发的AI试衣应用,一键生成10种穿搭效果
AI-ClothingTryOn是基于Google Gemini技术的虚拟试衣应用,支持人物与服装照片智能合成,可生成多达10种试穿效果版本,并提供自定义提示词优化功能。
47 17
AI-ClothingTryOn:服装店老板连夜下架试衣间!基于Gemini开发的AI试衣应用,一键生成10种穿搭效果
多模态AI核心技术:CLIP与SigLIP技术原理与应用进展
近年来,多模态表示学习在人工智能领域取得显著进展,CLIP和SigLIP成为里程碑式模型。CLIP由OpenAI提出,通过对比学习对齐图像与文本嵌入空间,具备强大零样本学习能力;SigLIP由Google开发,采用sigmoid损失函数优化训练效率与可扩展性。两者推动了多模态大型语言模型(MLLMs)的发展,如LLaVA、BLIP-2和Flamingo等,实现了视觉问答、图像描述生成等复杂任务。这些模型不仅拓展了理论边界,还为医疗、教育等领域释放技术潜力,标志着多模态智能系统的重要进步。
58 13
多模态AI核心技术:CLIP与SigLIP技术原理与应用进展
从零开始即刻拥有 DeepSeek-R1 满血版并使用 Dify 部署 AI 应用
本文介绍了如何使用阿里云提供的DeepSeek-R1大模型解决方案,通过Chatbox和Dify平台调用百炼API,实现稳定且高效的模型应用。首先,文章详细描述了如何通过Chatbox配置API并开始对话,适合普通用户快速上手。接着,深入探讨了使用Dify部署AI应用的过程,包括选购云服务器、安装Dify、配置对接DeepSeek-R1模型及创建工作流,展示了更复杂场景下的应用潜力。最后,对比了Chatbox与Dify的输出效果,证明Dify能提供更详尽、精准的回复。总结指出,阿里云的解决方案不仅操作简便,还为专业用户提供了强大的功能支持,极大提升了用户体验和应用效率。
1227 19
从零开始即刻拥有 DeepSeek-R1 满血版并使用 Dify 部署 AI 应用
帮你整理好了,AI 网关的 8 个常见应用场景
通过 SLS 还可以汇总 Actiontrail 事件、云产品可观测日志、LLM 网关明细日志、详细对话明细日志、Prompt Trace 和推理实时调用明细等数据汇总,从而建设完整统一的可观测方案。

热门文章

最新文章