如何构建AI驱动型智能服务?

简介:

人工智能(简称AI)驱动型智能服务将把当下各类前沿技术(例如区块链)、物联网以及客户体验因素结合起来——而其未来的发展方向则必然以信任协调为基础。

如何构建AI驱动型智能服务?

机器学习、深度学习、自然语言处理以及认知计算的结合将彻底改变人类与机器之间的交互方式。AI驱动型智能服务将学会感知人类身处的周遭环境、根据其以往行动推断个人喜好,并巧妙地通过日常生活对人类加以引导。事实上,对于此类目标的追求将成为当下十年乃至未来最为重要的转变,并使得AI驱动型智能服务被引入各个行业以及各类业务流程当中。

对于企业而言,AI驱动型智能服务则将深刻影响未来的工作流、物联网服务、客户体验以及同步分类帐(即区块链技术)。业务的成功将以AI处理结果为前提(详见图一)。一旦结果建立完成,企业即可规划AI驱动型智能服务,并利用其以规模化方式实现编排、自动化与民主化个性体验交付。

七类AI成果

如何构建AI驱动型智能服务? 

AI的颠覆性能力源自其速度、精确性以及强化人类判断的能力。我们可以通过以下七类成果了解AI项目所能够实现的具体价值:

1.感知并描述当前正在发生的事态。第一类成果能够同以往的手动编程方案一样描述周遭背景。

2.向你通知你所需了解的情况。通知内容可通过警报、工作流、提醒器以及其它信号加以呈现,并经由手动输入及学习等方式交付额外信息。

3.提供行动建议根据以往行动提供建议,同时利用权重属性、决策管理以及机器学习随时间推移进行建议修订。

4.自动执行重复工作。随着机器学习不断发展成熟,自动化的实用性也将更上一层楼。

5.提供预测以启发合理预期。要进行预测,我们首先需要建立起深度学习与神经网络,并利用其对行为进行预测与测试。

6.预防负面结果。利用认知推理机制发现潜在威胁。

7.态势感知提供当前重要信息。态势感知将进一步模拟人类在制定决策方面的能力。

AI驱动型智能服务的实现,必须以信任为基础

如何构建AI驱动型智能服务?

由于AI驱动型智能服务必须将决策制定责任指派给各原子驱动智能服务,因此任何AI驱动型智能服务的实现基础皆为信任。下面,我们将探讨AI驱动型智能服务信任协调体系中的五大关键组成部分。

1.配合AI,利用数据化足迹与数据出建立匿名与料。每一个人、设备或者网络都会提供部分信息。这种数字化足迹或产出可能源自面部分析、网络IP地址甚至是步态采集。利用AI与认知推理,系统将能够分析其中的模式并将其与身份关联起来。这意味着AI服务将可在不同情景之下识别并认出对应个人。

2.渲染式体验使交互更为自然。情景、内容、协作与频道共同成为AI驱动型服务交付渲染式独特体验的基础。这类服务将利用地理位置、时间段、天气、心跳率甚至是个人感受等因素作为情景属性,同时结合服务自身所掌握的对象身份与偏好,旨在改进相关性交交付更适合的内容。感知与响应机制将通过对话与文本框的形式实现参与者同机器间的协作。频道则包括各类具体交互点,例如移动、社交、信息亭以及个人等等。其目标在于根据身份提供自然的用户体验。

3.大规模个性化数字服务交付。以规模化方式实现预测分析、催化条件以及选择。预测分析允许客户获得提前预判的能力。催化条件则负责响应的交付或者触发。每位个人或设备都将拥有自己的情景体验,具体取决于身份、历史偏好以及当前需求。从自行选择到情景驱动型选择,再到多选择变量测试,AI系统将令选择拥有更为理想的满意度水平。

4.价值交换成就信任协调 采取行动之后,价值交换即可以交易方式进行。货币、非货币与共识是三种常见的价值交换形式。虽然货币交换也许最为人们所熟知,但非货币价值交换(包括认同、访问与影响)通常也能够带来令人瞩目的价值形式。另外,简单的一致性协商或者协议也能够在患者治疗方案或者土地所有权归属等层面实现价值交换。

5.步调与反馈值得关注AI支持型机器学亦然。在机器学习与其它AI工具的支持之下,智能服务开始考虑交付的步调问题:一次性、临时、重复、基于订阅以及阈值驱动型机制皆在其中。利用机器学习技术,系统将了解到智能服务的具体交付方式,并将其运用于未来的交互当中。

总结陈词:AI带来的强化效果

担心机器人统治世界确实有些多虑。事实上,成功的AI驱动型智能服务将强化人类智能——正如机器强化人类的物理体能一样。AI驱动型智能服务在定义同步分类帐技术(即区块链)、物联网、客户体验以及未来工作方式的商业模式当中扮演着关键性角色。由此实现的错误率降低、决策速度提升、需求信号识别、结果预测以及“灾难”预防等能力也必将得到越来越多人们的认可。

原文发布时间为:2017-9-7


本文作者:杨昀煦 


本文来自云栖社区合作伙伴至顶网,了解相关信息可以关注至顶网。

 

目录
相关文章
|
机器学习/深度学习 人工智能 物联网
|
机器学习/深度学习 人工智能 物联网
|
4天前
|
机器学习/深度学习 人工智能 算法
AI技术在医疗诊断中的应用及前景展望
本文旨在探讨人工智能(AI)技术在医疗诊断领域的应用现状、挑战与未来发展趋势。通过分析AI技术如何助力提高诊断准确率、缩短诊断时间以及降低医疗成本,揭示了其在现代医疗体系中的重要价值。同时,文章也指出了当前AI医疗面临的数据隐私、算法透明度等挑战,并对未来的发展方向进行了展望。
|
11天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
2024年,AI大模型在软件开发领域的应用正重塑传统流程,从自动化编码、智能协作到代码审查和测试,显著提升了开发效率和代码质量。然而,技术挑战、伦理安全及模型可解释性等问题仍需解决。未来,AI将继续推动软件开发向更高效、智能化方向发展。
|
16天前
|
机器学习/深度学习 人工智能 自然语言处理
AI在医疗领域的应用及其挑战
【10月更文挑战第34天】本文将探讨人工智能(AI)在医疗领域的应用及其面临的挑战。我们将从AI技术的基本概念入手,然后详细介绍其在医疗领域的各种应用,如疾病诊断、药物研发、患者护理等。最后,我们将讨论AI在医疗领域面临的主要挑战,包括数据隐私、算法偏见、法规合规等问题。
40 1
|
8天前
|
机器学习/深度学习 人工智能 算法
AI在医疗诊断中的应用
【10月更文挑战第42天】本文将探讨人工智能(AI)在医疗诊断中的应用,包括其优势、挑战和未来发展方向。我们将通过实例来说明AI如何改变医疗行业,提高诊断的准确性和效率。
|
8天前
|
存储 人工智能 搜索推荐
Memoripy:支持 AI 应用上下文感知的记忆管理 Python 库
Memoripy 是一个 Python 库,用于管理 AI 应用中的上下文感知记忆,支持短期和长期存储,兼容 OpenAI 和 Ollama API。
46 6
Memoripy:支持 AI 应用上下文感知的记忆管理 Python 库
|
4天前
|
机器学习/深度学习 人工智能 算法
强化学习在游戏AI中的应用,从基本原理、优势、应用场景到具体实现方法,以及Python在其中的作用
本文探讨了强化学习在游戏AI中的应用,从基本原理、优势、应用场景到具体实现方法,以及Python在其中的作用,通过案例分析展示了其潜力,并讨论了面临的挑战及未来发展趋势。强化学习正为游戏AI带来新的可能性。
25 4
|
13天前
|
机器学习/深度学习 人工智能 算法
AI在医疗领域的应用与挑战
本文探讨了人工智能(AI)在医疗领域的应用,包括其在疾病诊断、治疗方案制定、患者管理等方面的优势和潜力。同时,也分析了AI在医疗领域面临的挑战,如数据隐私、伦理问题以及技术局限性等。通过对这些内容的深入分析,旨在为读者提供一个全面了解AI在医疗领域现状和未来发展的视角。
49 10
|
7天前
|
机器学习/深度学习 人工智能 监控
探索AI在医疗诊断中的应用与挑战
本文旨在揭示人工智能(AI)技术如何革新医疗诊断领域,提高疾病预测的准确性和效率。通过分析AI在图像识别、数据分析等方面的应用实例,本文将探讨AI技术带来的便利及其面临的伦理和法律问题。文章还将提供代码示例,展示如何使用AI进行疾病诊断的基本过程。
下一篇
无影云桌面