多种负载均衡算法及其Java代码实现

本文涉及的产品
传统型负载均衡 CLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
网络型负载均衡 NLB,每月750个小时 15LCU
简介:

首先给大家介绍下什么是负载均衡(来自百科)

负载均衡 建立在现有网络结构之上,它提供了一种廉价有效透明的方法扩展 网络设备和 服务器的带宽、增加 吞吐量、加强网络数据处理能力、提高网络的灵活性和可用性。

负载均衡,英文名称为Load Balance,其意思就是分摊到多个操作单元上进行执行,例如Web 服务器、 FTP服务器、 企业关键应用服务器和其它关键任务服务器等,从而共同完成工作任务。

多种负载均衡算法及其Java代码实现

本文讲述的是”将外部发送来的请求均匀分配到对称结构中的某一台服务器上”的各种算法,并以Java代码演示每种算法的具体实现,OK,下面进入正题,在进入正题前,先写一个类来模拟Ip列表:

import java.util.HashMap;

/**  * @author ashang.peng@aliyun.com  * @date 二月 07, 2017  */

public class IpMap   {
    // 待路由的Ip列表,Key代表Ip,Value代表该Ip的权重
    public static HashMap<String, Integer> serverWeightMap =
            new HashMap<String, Integer>();

    static
    {
        serverWeightMap.put("192.168.1.100", 1);
        serverWeightMap.put("192.168.1.101", 1);
        // 权重为4
        serverWeightMap.put("192.168.1.102", 4);
        serverWeightMap.put("192.168.1.103", 1);
        serverWeightMap.put("192.168.1.104", 1);
        // 权重为3
        serverWeightMap.put("192.168.1.105", 3);
        serverWeightMap.put("192.168.1.106", 1);
        // 权重为2
        serverWeightMap.put("192.168.1.107", 2);
        serverWeightMap.put("192.168.1.108", 1);
        serverWeightMap.put("192.168.1.109", 1);
        serverWeightMap.put("192.168.1.110", 1);
    }
}

轮询(Round Robin)法

轮询调度算法的原理是每一次把来自用户的请求轮流分配给内部中的服务器,从1开始,直到N(内部服务器个数),然后重新开始循环。算法的优点是其简洁性,它无需记录当前所有连接的状态,所以它是一种无状态调度。

其代码实现大致如下:

import java.util.ArrayList;
import java.util.HashMap;
import java.util.Map;
import java.util.Set;

/**  * @author ashang.peng@aliyun.com  * @date 二月 07, 2017  */

class RoundRobin   {
    private static Integer pos = 0;

    public static String getServer()
    {
        // 重建一个Map,避免服务器的上下线导致的并发问题
        Map<String, Integer> serverMap =
                new HashMap<String, Integer>();
        serverMap.putAll(IpMap.serverWeightMap);

        // 取得Ip地址List
        Set<String> keySet = serverMap.keySet();
        ArrayList<String> keyList = new ArrayList<String>();
        keyList.addAll(keySet);

        String server = null;
        synchronized (pos)
        {
            if (pos > keySet.size())
                pos = 0;
            server = keyList.get(pos);
            pos ++;
        }

        return server;
    }
}

由于serverWeightMap中的地址列表是动态的,随时可能有机器上线、下线或者宕机,因此为了避免可能出现的并发问题,方法内部要新建局部变量serverMap,现将serverMap中的内容复制到线程本地,以避免被多个线程修改。这样可能会引入新的问题,复制以后serverWeightMap的修改无法反映给serverMap,也就是说这一轮选择服务器的过程中,新增服务器或者下线服务器,负载均衡算法将无法获知。新增无所谓,如果有服务器下线或者宕机,那么可能会访问到不存在的地址。因此,服务调用端需要有相应的容错处理,比如重新发起一次server选择并调用。

对于当前轮询的位置变量pos,为了保证服务器选择的顺序性,需要在操作时对其加锁,使得同一时刻只能有一个线程可以修改pos的值,否则当pos变量被并发修改,则无法保证服务器选择的顺序性,甚至有可能导致keyList数组越界。

轮询法的优点在于:试图做到请求转移的绝对均衡。

轮询法的缺点在于:为了做到请求转移的绝对均衡,必须付出相当大的代价,因为为了保证pos变量修改的互斥性,需要引入重量级的悲观锁synchronized,这将会导致该段轮询代码的并发吞吐量发生明显的下降。

随机(Random)法

通过系统的随机算法,根据后端服务器的列表大小值来随机选取其中的一台服务器进行访问。由概率统计理论可以得知,随着客户端调用服务端的次数增多,

其实际效果越来越接近于平均分配调用量到后端的每一台服务器,也就是轮询的结果。

随机法的代码实现大致如下:

import java.util.ArrayList;
import java.util.HashMap;
import java.util.Map;
import java.util.Set;

/**  * @author ashang.peng@aliyun.com  * @date 二月 07, 2017  */

 class Random   {
    public static String getServer()
    {
        // 重建一个Map,避免服务器的上下线导致的并发问题   
        Map<String, Integer> serverMap =
                new HashMap<String, Integer>();
        serverMap.putAll(IpMap.serverWeightMap);

        // 取得Ip地址List   
        Set<String> keySet = serverMap.keySet();
        ArrayList<String> keyList = new ArrayList<String>();
        keyList.addAll(keySet);

        java.util.Random random = new java.util.Random();
        int randomPos = random.nextInt(keyList.size());

        return keyList.get(randomPos);
    }
}

整体代码思路和轮询法一致,先重建serverMap,再获取到server列表。在选取server的时候,通过Random的nextInt方法取0~keyList.size()区间的一个随机值,从而从服务器列表中随机获取到一台服务器地址进行返回。基于概率统计的理论,吞吐量越大,随机算法的效果越接近于轮询算法的效果。

源地址哈希(Hash)法

源地址哈希的思想是根据获取客户端的IP地址,通过哈希函数计算得到的一个数值,用该数值对服务器列表的大小进行取模运算,得到的结果便是客服端要访问服务器的序号。采用源地址哈希法进行负载均衡,同一IP地址的客户端,当后端服务器列表不变时,它每次都会映射到同一台后端服务器进行访问。

源地址哈希算法的代码实现大致如下:

import java.util.ArrayList;
import java.util.HashMap;
import java.util.Map;
import java.util.Set;

/**  * @author ashang.peng@aliyun.com  * @date 二月 07, 2017  */

 class Hash      {
    public static String getServer()
    {
        // 重建一个Map,避免服务器的上下线导致的并发问题
        Map<String, Integer> serverMap =
                new HashMap<String, Integer>();
        serverMap.putAll(IpMap.serverWeightMap);

        // 取得Ip地址List
        Set<String> keySet = serverMap.keySet();
        ArrayList<String> keyList = new ArrayList<String>();
        keyList.addAll(keySet);

        // 在Web应用中可通过HttpServlet的getRemoteIp方法获取
        String remoteIp = "127.0.0.1";
        int hashCode = remoteIp.hashCode();
        int serverListSize = keyList.size();
        int serverPos = hashCode % serverListSize;

        return keyList.get(serverPos);
    }
}

前两部分和轮询法、随机法一样就不说了,差别在于路由选择部分。通过客户端的ip也就是remoteIp,取得它的Hash值,对服务器列表的大小取模,结果便是选用的服务器在服务器列表中的索引值。

源地址哈希法的优点在于:保证了相同客户端IP地址将会被哈希到同一台后端服务器,直到后端服务器列表变更。根据此特性可以在服务消费者与服务提供者之间建立有状态的session会话。

源地址哈希算法的缺点在于:除非集群中服务器的非常稳定,基本不会上下线,否则一旦有服务器上线、下线,那么通过源地址哈希算法路由到的服务器是服务器上线、下线前路由到的服务器的概率非常低,如果是session则取不到session,如果是缓存则可能引发”雪崩”。如果这么解释不适合明白,可以看我之前的一篇文章MemCache超详细解读,一致性Hash算法部分。

加权轮询(Weight Round Robin)法

不同的后端服务器可能机器的配置和当前系统的负载并不相同,因此它们的抗压能力也不相同。给配置高、负载低的机器配置更高的权重,让其处理更多的请;而配置低、负载高的机器,给其分配较低的权重,降低其系统负载,加权轮询能很好地处理这一问题,并将请求顺序且按照权重分配到后端。加权轮询法的代码实现大致如下:

import java.util.*;

/**  * @author ashang.peng@aliyun.com  * @date 二月 07, 2017  */
class WeightRoundRobin   {
    private static Integer pos;

    public static String getServer()
    {
        // 重建一个Map,避免服务器的上下线导致的并发问题
        Map<String, Integer> serverMap =
                new HashMap<String, Integer>();
        serverMap.putAll(IpMap.serverWeightMap);

        // 取得Ip地址List
        Set<String> keySet = serverMap.keySet();
        Iterator<String> iterator = keySet.iterator();

        List<String> serverList = new ArrayList<String>();
        while (iterator.hasNext())
        {
            String server = iterator.next();
            int weight = serverMap.get(server);
            for (int i = 0; i < weight; i++)
                serverList.add(server);
        }

        String server = null;
        synchronized (pos)
        {
            if (pos > keySet.size())
                pos = 0;
            server = serverList.get(pos);
            pos ++;
        }

        return server;
    }
}

与轮询法类似,只是在获取服务器地址之前增加了一段权重计算的代码,根据权重的大小,将地址重复地增加到服务器地址列表中,权重越大,该服务器每轮所获得的请求数量越多。

加权随机(Weight Random)法

与加权轮询法一样,加权随机法也根据后端机器的配置,系统的负载分配不同的权重。不同的是,它是按照权重随机请求后端服务器,而非顺序。

import java.util.*;

/**  * @author ashang.peng@aliyun.com  * @date 二月 07, 2017  */

 class WeightRandom   {
    public static String getServer()
    {
        // 重建一个Map,避免服务器的上下线导致的并发问题
        Map<String, Integer> serverMap =
                new HashMap<String, Integer>();
        serverMap.putAll(IpMap.serverWeightMap);

        // 取得Ip地址List
        Set<String> keySet = serverMap.keySet();
        Iterator<String> iterator = keySet.iterator();

        List<String> serverList = new ArrayList<String>();
        while (iterator.hasNext())
        {
            String server = iterator.next();
            int weight = serverMap.get(server);
            for (int i = 0; i < weight; i++)
                serverList.add(server);
        }

        java.util.Random random = new java.util.Random();
        int randomPos = random.nextInt(serverList.size());

        return serverList.get(randomPos);
    }
}

这段代码相当于是随机法和加权轮询法的结合,比较好理解,就不解释了。

最小连接数(Least Connections)法

最小连接数算法比较灵活和智能,由于后端服务器的配置不尽相同,对于请求的处理有快有慢,它是根据后端服务器当前的连接情况,动态地选取其中当前

积压连接数最少的一台服务器来处理当前的请求,尽可能地提高后端服务的利用效率,将负责合理地分流到每一台服务器。

前面几种方法费尽心思来实现服务消费者请求次数分配的均衡,当然这么做是没错的,可以为后端的多台服务器平均分配工作量,最大程度地提高服务器的利用率,但是实际情况是否真的如此?实际情况中,请求次数的均衡真的能代表负载的均衡吗?这是一个值得思考的问题。

上面的问题,再换一个角度来说就是:以后端服务器的视角来观察系统的负载,而非请求发起方来观察。最小连接数法便属于此类。

最小连接数算法比较灵活和智能,由于后端服务器的配置不尽相同,对于请求的处理有快有慢,它正是根据后端服务器当前的连接情况,动态地选取其中当前积压连接数最少的一台服务器来处理当前请求,尽可能地提高后端服务器的利用效率,将负载合理地分流到每一台机器。由于最小连接数设计服务器连接数的汇总和感知,设计与实现较为繁琐,此处就不说它的实现了。


来源:51CTO

相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
25天前
|
存储 算法 安全
探究‘公司禁用 U 盘’背后的哈希表算法与 Java 实现
在数字化办公时代,信息安全至关重要。许多公司采取“禁用U盘”策略,利用哈希表算法高效管理外接设备的接入权限。哈希表通过哈希函数将设备标识映射到数组索引,快速判断U盘是否授权。例如,公司预先将允许的U盘标识存入哈希表,新设备接入时迅速验证,未授权则禁止传输并报警。这有效防止恶意软件和数据泄露,保障企业信息安全。 代码示例展示了如何用Java实现简单的哈希表,模拟公司U盘管控场景。哈希表不仅用于设备管理,还在文件索引、用户权限等多方面助力信息安全防线的构建,为企业数字化进程保驾护航。
|
18天前
|
负载均衡 算法
架构学习:7种负载均衡算法策略
四层负载均衡包括数据链路层、网络层和应用层负载均衡。数据链路层通过修改MAC地址转发帧;网络层通过改变IP地址实现数据包转发;应用层有多种策略,如轮循、权重轮循、随机、权重随机、一致性哈希、响应速度和最少连接数均衡,确保请求合理分配到服务器,提升性能与稳定性。
125 11
架构学习:7种负载均衡算法策略
|
19天前
|
SQL Java 数据库连接
如何在 Java 代码中使用 JSqlParser 解析复杂的 SQL 语句?
大家好,我是 V 哥。JSqlParser 是一个用于解析 SQL 语句的 Java 库,可将 SQL 解析为 Java 对象树,支持多种 SQL 类型(如 `SELECT`、`INSERT` 等)。它适用于 SQL 分析、修改、生成和验证等场景。通过 Maven 或 Gradle 安装后,可以方便地在 Java 代码中使用。
138 11
|
23天前
|
JSON Java 数据挖掘
利用 Java 代码获取淘宝关键字 API 接口
在数字化商业时代,精准把握市场动态与消费者需求是企业成功的关键。淘宝作为中国最大的电商平台之一,其海量数据中蕴含丰富的商业洞察。本文介绍如何通过Java代码高效、合规地获取淘宝关键字API接口数据,帮助商家优化产品布局、制定营销策略。主要内容包括: 1. **淘宝关键字API的价值**:洞察用户需求、优化产品标题与详情、制定营销策略。 2. **获取API接口的步骤**:注册账号、申请权限、搭建Java开发环境、编写调用代码、解析响应数据。 3. **注意事项**:遵守法律法规与平台规则,处理API调用限制。 通过这些步骤,商家可以在激烈的市场竞争中脱颖而出。
|
2月前
|
安全 Java 编译器
深入理解Java中synchronized三种使用方式:助您写出线程安全的代码
`synchronized` 是 Java 中的关键字,用于实现线程同步,确保多个线程互斥访问共享资源。它通过内置的监视器锁机制,防止多个线程同时执行被 `synchronized` 修饰的方法或代码块。`synchronized` 可以修饰非静态方法、静态方法和代码块,分别锁定实例对象、类对象或指定的对象。其底层原理基于 JVM 的指令和对象的监视器,JDK 1.6 后引入了偏向锁、轻量级锁等优化措施,提高了性能。
63 3
|
3月前
|
Java
java小工具util系列4:基础工具代码(Msg、PageResult、Response、常量、枚举)
java小工具util系列4:基础工具代码(Msg、PageResult、Response、常量、枚举)
72 24
|
2月前
|
前端开发 Java 测试技术
java日常开发中如何写出优雅的好维护的代码
代码可读性太差,实际是给团队后续开发中埋坑,优化在平时,没有那个团队会说我专门给你一个月来优化之前的代码,所以在日常开发中就要多注意可读性问题,不要写出几天之后自己都看不懂的代码。
71 2
|
2月前
|
Java 编译器 数据库
Java 中的注解(Annotations):代码中的 “元数据” 魔法
Java注解是代码中的“元数据”标签,不直接参与业务逻辑,但在编译或运行时提供重要信息。本文介绍了注解的基础语法、内置注解的应用场景,以及如何自定义注解和结合AOP技术实现方法执行日志记录,展示了注解在提升代码质量、简化开发流程和增强程序功能方面的强大作用。
103 5
|
2月前
|
存储 算法 Java
Java 内存管理与优化:掌控堆与栈,雕琢高效代码
Java内存管理与优化是提升程序性能的关键。掌握堆与栈的运作机制,学习如何有效管理内存资源,雕琢出更加高效的代码,是每个Java开发者必备的技能。
83 5
|
3月前
|
Java API 开发者
Java中的Lambda表达式:简洁代码的利器####
本文探讨了Java中Lambda表达式的概念、用途及其在简化代码和提高开发效率方面的显著作用。通过具体实例,展示了Lambda表达式如何在Java 8及更高版本中替代传统的匿名内部类,使代码更加简洁易读。文章还简要介绍了Lambda表达式的语法和常见用法,帮助开发者更好地理解和应用这一强大的工具。 ####