【业界】开源大势降低技术门槛,人工智能企业更依赖大数据

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介:

美国巴布森学院(Babson College)管理与信息科学学院的教授,MIT 院士,德勤资深研究员Thomas H. Davenport 最近有一个新发现:并不是所有想要使用人工智能的企业都会跟提供技术的公司合作。


为什么,因为有免费的开源算法可用。


靠销售AI软件来赚钱变得越来越难


Thomas以一家向他咨询的出版公司为例,这家公司希望能在产品的数据化和情景化中使用人工智能技术,但是,跟其他纷纷与IBM Watson合作的竞争对手不一样,这家出版公司并没有打算从IBM购买认知技术。


他们说:“我们认为AI软件的市场是迅速商品化的,我们能够以更低的成本来获得所需要的(AI)能力”。 


这家出版公司几位经验丰富的经理还提到,他们认为可以利用开源的人工智能软件来降低成本,现在可以选择的有好几种。另外,很多开放资源提供者并不是小企业,它们可都是谷歌、Facebook、微软和亚马逊这样的巨头。


Thomas说:“刚听到这样的观点时,我略微有一点意外。智能技术现在难道已经那么便宜,那么开放了吗?”


在一个已经变得相对更新的市场上,所谓的认知软件市场要怎样进行商品化?为什么深度学习和机器学习的开发者会进行开源?如果真的比不上免费的软件,Watson为什么可以为IBM带来100亿以上的收入。


首先,从为什么AI技术,也就是上文所说的认知技术为何会商品化这一方面,可以得到一些启示。


现在,软件开发中有一股强大的趋势——在向“微服务”发展,这种“微服务”在小型的功能块上处理运算,然后得到结果。这和传统的“API”或者应用程序交互界面的工作方式一样。由于这些都是小型的功能模块,比起大型的软件单元,企业更难为此付费。因为都是小型的和模块化的,所以这些企业会租用多个软件开发者开发的东西,而不是直接从大企业购买。


这几乎就是认知软件领域过去10多年所发生的事。现在开源库很多,其中不乏一些拥有通用认知功能的算法,比如神经网络、深度学习、语音解析和识别、图像识别等等。


一些库已经开源好几年了,谷歌、微软、Facebook和亚马逊都是最近一两年才开源。通常,通过这些开源库供应商的云平台,可以使用这些开源工具(这样一来,开源的公司至少还可以挣一点钱)。还有另一种方法,就是通过编程网站,比如Github来使用这些开源库。


理想的情况是,如果多家公司和大量的程序员都在使用某一家公司的开放资源认知工具,那么很有可能,软件将会变得标准化,另外,把这些工具嵌入到公司的其他产品中,也会变得更容易一些。


即便是为 IBM 带来丰厚收入的Watson也在走开源的道路。据统计,在Watson 开发者云上,现在有近20个API是可用的。另外,这个数字是不断变化的,因为会不断增加新的API、测试版会下架以及相关的API可能会被整合。


Thomas说,考虑到认知工具商品化的速度非常快,不久后,更多Watson的API进一步开源的话,我一点也不会觉得惊讶。


另一个驱动商品化的因素是“Bots”,也叫智能人机交互API,或聊天机器人,它通过文本或者声音的输入,允许人和程序间进行对话式的交流。Bot想要成功的话,首先要把语音转化成文本,然后分析分本,理解其含义。这听起来似乎很难,但是许多同类的公司已经发布了自己的Bot AI软件开放资源,并把Bot加入到了自己程序的交互中。很快,这一技术就会变得很普遍。由于Bot只是一个交互界面,一种像打字或者点击一样的东西,只不过更加容易一些罢了,所以没人会愿意在这个技术上花太多的钱。


以上这一切意味着,靠销售AI软件来赚钱会变得越来越难。当然,对于没有数据科学家的公司来说,会需要许多外部的建议。公司也需要去研究在自己的业务中哪些部分使用这些工具比较好。


Thomas说,我认为,会有一些高度定制化的AI解决方案,它们会是非常详细和具体的,并且通过开放资源就能获取。比如,能探测到欺诈的图像分析系统。


但是,总体上,拥有AI技术的软件会越来越多,而且都是免费的。如果你的公司知道做什么,怎么使用,或者怎样把其加入你的业务中,你就能挣钱。如果只是打算卖AI软件,收益可能就不会那么好了。


技术门槛降低,数据门槛变高


虽然算法的开源降低了技术门槛,但是在智能产品的开发中,只有算法是远远不够的。《财富》网站在7月11日一篇名为《为什么说数据是原油?》的报道中提到,只有拥有了数据,人工智能才会腾飞。


风险投资公司Bloomberg Beta的合伙人Shivon Zilis在评价的数据的价值时说:“数据是新的原油”。她认为,虽然谷歌、Facebook和亚马逊对人工智能软件进行了开源,任何工程师都可以获得代码并开发新的应用程序,但是,大公司并不会公开必需的数据。


谈到大公司开源软件的原因,她认为,这些公司正在通过开放AI软件工具包来招纳更多的人才。所以,如果真的要竞争,公司拥有的数据实际上比开源的软件更加重要。


IBM Watson 数据处理服务部门的总经理David Keeny说:“数据会成为主流。此外,现在全世界的数据,只有20%在互联网上,剩下的80%都被各大公司和组织占据。


谈到数据,希望在产品中加入人工智能技术的公司又分为两种,一种是有数据的,另一种是无数据的。有数据的是那些长久以来注重收集数据的老牌公司,比如医院;没有数据的通常是许多初创企业。


有数据的公司在智能化的道路上要走得容易一些,以自己手上的数据为资本,他们可以轻松地与拥有强大算法计算的公司达成合作,这种模式最典型的便是DeepMind与英国全民医疗体系(NHS)的合作,两家机构最新的技术成果是使用计算机视觉来诊断眼疾。


没有数据的初创企业也存在机会,那便是在“无数据问题”的环境,比如日程安排这些还没有公司取得巨大进展的问题处理上。


国外媒体Verge报道说,像X.ai这样的初创企业并没有谷歌在Gmail上累积的海量数据,但也开发出了智能化的日程安排软件,并获得商业的成功。 通过这一案例,Verge认为,初创企业可以聚焦于特别小的领域,比如X.ai关注日程安排的智能化。这是一个没有数据的人工智能企业取得突破的途径。


文章转自新智元公众号,原文链接

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术深度解析:从基础到应用的全面介绍
人工智能(AI)技术的迅猛发展,正在深刻改变着我们的生活和工作方式。从自然语言处理(NLP)到机器学习,从神经网络到大型语言模型(LLM),AI技术的每一次进步都带来了前所未有的机遇和挑战。本文将从背景、历史、业务场景、Python代码示例、流程图以及如何上手等多个方面,对AI技术中的关键组件进行深度解析,为读者呈现一个全面而深入的AI技术世界。
54 10
|
17天前
|
机器学习/深度学习 数据采集 人工智能
深入探索人工智能与大数据的融合之路
本文旨在探讨人工智能(AI)与大数据技术如何相互促进,共同推动现代科技的进步。通过分析两者结合的必要性、挑战以及未来趋势,为读者提供一个全面的视角,理解这一领域内的最新发展动态及其对行业的影响。文章不仅回顾了历史背景,还展望了未来可能带来的变革,并提出了几点建议以促进更高效的技术整合。
|
3天前
|
人工智能 安全 算法
深度剖析 打造大模型时代的可信AI:技术创新与安全治理并重
2024年12月11日,由中国计算机学会计算机视觉专委会主办的“打造大模型时代的可信AI”论坛在上海举行。论坛汇聚了来自多家知名学术机构和企业的顶尖专家,围绕AI的技术风险与治理挑战,探讨如何在大模型时代确保AI的安全性和可信度,推动技术创新与安全治理并行。论坛重点关注计算机视觉领域的最新进展,提出了多项技术手段和治理框架,为AI的健康发展提供了有力支持。
26 8
深度剖析 打造大模型时代的可信AI:技术创新与安全治理并重
|
3天前
|
机器学习/深度学习 人工智能 运维
阿里云技术公开课直播预告:基于阿里云 Elasticsearch 构建 AI 搜索和可观测 Chatbot
阿里云技术公开课预告:Elastic和阿里云搜索技术专家将深入解读阿里云Elasticsearch Enterprise版的AI功能及其在实际应用。
阿里云技术公开课直播预告:基于阿里云 Elasticsearch 构建 AI 搜索和可观测 Chatbot
|
11天前
|
机器学习/深度学习 人工智能 物联网
AI赋能大学计划·大模型技术与应用实战学生训练营——电子科技大学站圆满结营
12月05日,由中国软件行业校园招聘与实习公共服务平台携手阿里魔搭社区共同举办的AI赋能大学计划·大模型技术与产业趋势高校行AIGC项目实战营·电子科技大学站圆满结营。
AI赋能大学计划·大模型技术与应用实战学生训练营——电子科技大学站圆满结营
|
14天前
|
机器学习/深度学习 存储 人工智能
【AI系统】离线图优化技术
本文回顾了计算图优化的各个方面,包括基础优化、扩展优化和布局与内存优化,旨在提高计算效率。基础优化涵盖常量折叠、冗余节点消除、算子融合、算子替换和算子前移等技术。这些技术通过减少不必要的计算和内存访问,提高模型的执行效率。文章还探讨了AI框架和推理引擎在图优化中的应用差异,为深度学习模型的优化提供了全面的指导。
36 5
【AI系统】离线图优化技术
|
3天前
|
机器学习/深度学习 传感器 人工智能
AI视频监控系统在养老院中的技术实现
AI视频监控系统在养老院的应用,结合了计算机视觉、深度学习和传感器融合技术,实现了对老人体征、摔倒和异常行为的实时监控与分析。系统通过高清摄像头和算法模型,能够准确识别老人的动作和健康状况,并及时向护理人员发出警报,提高护理质量和安全性。
28 14
|
4天前
|
传感器 机器学习/深度学习 人工智能
AI视频监控卫士技术介绍:智能化河道管理解决方案
AI视频监控卫士系统,通过高清摄像头、智能传感器和深度学习技术,实现河道、水库、城市水务及生态保护区的全天候、全覆盖智能监控。系统能够自动识别非法行为、水质变化和异常情况,并实时生成警报,提升管理效率和精准度。
33 13
|
2天前
|
存储 人工智能 运维
AI-Native的路要怎么走?一群技术“老炮儿”指明了方向
上世纪70年代,沃兹尼亚克、乔布斯等人成立Homebrew Computer Club,推动个人电脑普及。如今,创原会承袭这一精神,由CNCF执行董事Priyanka Sharma等构建,聚焦云原生和AI技术,汇聚各行业技术骨干,探索前沿科技。2024年创原会年度峰会达成“全面拥抱AI-Native”共识,解决算力与存储瓶颈,推动AI原生应用开发,助力千行万业智能化转型,成为行业创新风向标。
|
3天前
|
人工智能 计算机视觉
幻觉不一定有害,新框架用AI的幻觉优化图像分割技术
在图像分割领域,传统方法依赖大量手动标注数据,效率低下且难以适应复杂场景。为解决这一问题,研究人员提出了“任务通用可提示分割”方法,利用多模态大型语言模型(MLLM)生成实例特定提示。然而,MLLM常出现幻觉,影响分割精度。为此,研究团队开发了“Prompt-Mask Cycle”(ProMaC)框架,通过迭代生成和验证提示及掩码,有效利用幻觉信息,提高了分割精度和效率。实验结果表明,ProMaC在多个基准数据集上表现出色,为图像分割技术的发展提供了新思路。
15 6
下一篇
DataWorks