机器人传感技术浅析

简介:

一般机器人系统由机械手、环境、任务和控制器四个互相作用的部分组成。我们称一般安装在机器人机械手上的传感器为内传感器(Inner Sensons),而称作为环境的一部分的传感器为外传感器(External Sensons)。下面将以此为主,结合机器人传感器其它分类方法进行阐述。

机器人产业近年来发展很快,2012年全球产量为16万台,欧、美、日等工业发达国家机器人市场已比较成熟,已处于平增长阶段。其机器人密度(万名员工使用机器人台数)韩国为347台,日本为339台,法国为261台,而我国为10台(有统计数据称为21台, 仅供参考)。

而我国机器人市场也发展很快,工业机器人每年装机量增长速度均超过20%,2010年装机量为52290台,2011年上涨到74317台,实现了42%的增长率。

在2012年,我国出台了《智能制造科技发展“十二五”专项规划》,2013年4月21日还成立了“中国机器人产业联盟”,这些均证明了我国机器人产业将会有更大的发展。

机器人产品目前分类为工业机器人和服务机器人两大类。国内也有分为工业机器人和特种机器人两大类的;或分为一般机器人和智能机器人两大类;或分为一般机器人和移动机器人两类;或分为一般机器人和拟人机器人两类等。

目前工业机器人多用于搬运、分拣、上下料、包装、码垛、焊接、喷涂、打磨、抛光、切割、摆放、装配等方面。

随着智能化的程度提高,机器人传感器应用越来越多。智能机器人主要有交互机器人、传感机器人和自主机器人3种。从拟人功能出发,视觉、力觉、触觉最为重要,早已进入实用阶段,听觉也有较大进展,其它还有嗅觉、味觉、滑觉等,对应有多种传感器,所以机器人传感产业也形成了生产和科研力量。

内传感器

机器介机电一体化的产品,内传感器和电机、轴等机械部件或机械结构如手臂(Arm)、手腕(Wrist)等安装在一起,完成位置、速度、力度的测量,实现伺服控制。

位置(位移)传感器

直线移动传感器有电位计式传感器和可调变压器两种。角位移传感器有电位计式、可调变压器(旋转变压器)及光电编码器三种,其中光电编码器有增量式编码器和绝对式编码器。

增量式编码器一般用于零位不确定的位置伺服控制,绝对式编码器能够得到对应于编码器初始锁定位置的驱动轴瞬时角度值,当设备受到压力时,只要读出每个关节编码器的读数,就能够对伺服控制的给定值进行调整,以防止机器人启动时产生过剧烈的运动。

速度和加速度传感器

速度传感器有测量平移和旋转运动速度两种,但大多数情况下,只限于测量旋转速度。利用位移的导数,特别是光电方法让光照射旋转圆盘,检测出旋转频率和脉冲数目,以求出旋转角度, 及利用圆盘制成有缝隙,通过二个光电二极管辨别出角速度,即转速,这就是光电脉冲式转速传感器。

此外还有测速发电机用于测速等。

应变仪即伸缩测量仪,也是一种应力传感器,用于加速度测量。加速度传感器用于测量工业机器人的动态控制信号。

一般有由速度测量进行推演、已知质量物体加速度所产生动力,即应用应变仪测量此力进行推演,还有就是下面所说的方法:

与被测加速度有关的力可由一个已知质量产生。这种力可以为电磁力或电动力,最终简化为对电流的测量,这就是伺服返回传感器,实际又能有多种振动式加速度传感器。

力觉传感器

力觉传感器用于测量两物体之间作用力的三个分量和力矩的三个分量。机器人中理想的传感器是粘接在依从部件的半导体应力计。具体有金属电阻型力觉传感器、半导体型力觉传感器、其它磁性压力式和利用弦振动原理制作的力觉传感器。

还有转矩传感器(如用光电传感器测量转矩)、腕力传感器(如国际斯坦福研究所的由6个小型差动变压器组成, 能测量作用于腕部X、Y和Z三个方向的动力及各轴动转矩)等。

由于机器人发展历史较长,近年来普遍采用以交流永磁电动机为主的交流伺服系统,对应位置、速度等传感器大量应用的是:各种类型的光电编码器、磁编码器和旋转变压器。

外传感器

以往一般工业机器人是没有外部感觉能力的,而新一代机器人如多关节机器人,特别是移动机器人、智能机器人则要求具有校正能力和反应环境变化的能力,外传感器就是实现这些能力的。

触觉传感器

微型开关是接触传感器最常用型式,另有隔离式双态接触传感器(即双稳态开关半导体电路)、单模拟量传感器、矩阵传感器(压电元件的矩阵传感器、人工皮肤——变电导聚合物、光反射触觉传感器等)。

应力传感器

如多关节机器人进行动作时需要知道实际存在的接触、接触点的位置(定位)、接触的特性即估计受到的力(表征)这三个条件,所以用上节已指出的应变仪,结合具体应力检测的基本假设,如求出工作台面与物体间的作用力,具体有对环境装设传感器、对机器人腕部装设测试仪器用传动装置作为传感器等方法。

接近度传感器

由于机器人的运动速度提高及对物体装卸可能引起损坏等原因需要知道物体在机器人工作场地内存在位置的先验信息以及适当的轨迹规划,所以有必要应用测量接近度的遥感方法。

接近传感器分为无源传感器和有源传感器,所以除自然信号源外,还可能需要人工信号的发送器和接收器。

超声波接近度传感器用于检测物体的存在和测量距离。它不能用于测量小于30~50cm的距离,而测距范围较大,它可用在移动机器人上,也可用于大型机器人的夹手上。还可做成超声导航系统。

红外线接近度传感器,其体积很小,只有几立方厘米大,因此可以安装在机器人夹手上。

声觉传感器

用于感受和解释在气体(非接触感受)、液体或固体(接触感受)中的声波。声波传感器复杂程度可以从简单的声波存在检测到复杂的声波频率分析, 直到对连续自然语言中单独语音和词汇的辨别。

接触式或非接触式温度传感器

近年在机器人中应用较广,除常用的热电阻(热敏电阻)、热电偶等外,热电电视摄像机测及感觉温度图像方面也取得进展。

滑觉传感器

用于检测物体的滑动。当要求机器人抓住特性未知的物体时,必须确定最适当的握力值,所以要求检测出握力不够时所产生的物体滑动信号。

目前有利用光学系统的滑觉传感器和利用晶体接收器的滑觉传感器,后者的检测灵敏度与滑动方向无关。

距离传感器

用于智能移动机器人的距离传感器有:激光测距仪(兼可测角)、声纳传感器等,近几年得到发展。

视觉传感器

这是应用很广泛的外传感器,有鉴于它的内容很丰富,而且机器视觉经常独立形成产品,与软件技术关系很密切,限于篇幅,将另设专文介绍。

小结

所有机器人传感器均与信号的检测以后的信号变换、处理关系非常密切, 而且变换处理的软件工作量很大,又与人工智能等信息技术融合,所以本文只是抛砖引玉,有待深入探讨。

本文转自d1net(转载)

目录
相关文章
|
1月前
|
网络协议 机器人 C++
KUKA机器人Socket通讯配置方法:技术干货分享
【10月更文挑战第7天】在现代自动化生产线上,KUKA机器人凭借其高效、灵活和精确的特点,成为众多企业的首选。为了实现KUKA机器人与其他设备或系统之间的数据交互,Socket通讯配置显得尤为重要。本文将详细介绍KUKA机器人Socket通讯的配置方法,帮助大家在工作中更好地掌握这一技术。
185 2
|
2月前
|
安全 搜索推荐 机器人
纳米技术与医疗:纳米机器人的临床应用前景
【9月更文挑战第28天】纳米机器人作为纳米技术在医疗领域的重要应用,正逐步改变着传统医疗的面貌。它们在药物输送、癌症治疗、手术辅助和疾病诊断等方面展现出广阔的应用前景。随着科学技术的不断进步和纳米技术的不断成熟,我们有理由相信,纳米机器人将成为医疗领域的一个重要且不可或缺的组成部分,为人类的健康事业做出更大的贡献。同时,我们也应关注纳米技术的安全性和可靠性问题,确保其在医疗应用中的安全和有效。
|
3月前
|
机器学习/深度学习 自然语言处理 算法
聊天机器人开发的最佳实践:技术探索与案例分析
【8月更文挑战第22天】聊天机器人作为人工智能领域的重要应用之一,正逐步改变着人们的生活和工作方式。通过遵循最佳实践和技术探索,开发者可以开发出更加智能、高效、安全的聊天机器人产品。未来,随着技术的不断进步和应用场景的不断拓展,聊天机器人将在更多领域发挥重要作用。
|
3月前
|
Apache UED 数据安全/隐私保护
揭秘开发效率提升秘籍:如何通过Apache Wicket组件重用技巧大翻新用户体验
【8月更文挑战第31天】张先生在开发基于Apache Wicket的企业应用时,发现重复的UI组件增加了维护难度并影响加载速度。为优化体验,他提出并通过面板和组件重用策略解决了这一问题。例如,通过创建`ReusableLoginPanel`类封装登录逻辑,使得其他页面可以轻松复用此功能,从而减少代码冗余、提高开发效率及页面加载速度。这一策略还增强了应用的可维护性和扩展性,展示了良好组件设计的重要性。
57 0
|
3月前
|
人工智能 自然语言处理 机器人
掌握未来沟通的艺术:运用TensorFlow与自然语言处理(NLP)技术,从零开始构建你的专属智能对话机器人,让机器理解你的一言一行
【8月更文挑战第31天】本文详细介绍如何利用TensorFlow与自然语言处理技术开发对话机器人。从准备问答数据集开始,通过预处理、构建Seq2Seq模型、训练及预测等步骤,最终实现了一个简易的聊天机器人。示例代码涵盖数据加载、模型搭建及对话功能,适合希望在实际项目中应用AI技术的开发者参考。
47 0
|
4月前
|
机器学习/深度学习 自然语言处理 算法
NLP技术在聊天机器人中的应用:技术探索与实践
【7月更文挑战第13天】NLP技术在聊天机器人中的应用已经取得了显著的成果,并将在未来继续发挥重要作用。通过不断探索和创新,我们可以期待更加智能、自然的聊天机器人的出现,为人类生活带来更多便利和乐趣。
|
5月前
|
机器学习/深度学习 人工智能 算法
强化学习:从游戏到机器人的技术之旅
【6月更文挑战第14天】强化学习是智能体通过与环境互动学习决策策略的方法,已在游戏(如AlphaGo和OpenAI Five)和机器人技术中展现出巨大潜力。在机器人领域,它应用于控制、动作学习和交互沟通,帮助机器人适应复杂环境和任务。尽管面临挑战,但随着技术发展,强化学习有望在更多领域发挥关键作用。
|
5月前
|
机器人 定位技术 C++
技术笔记:ROS中测试机器人里程计信息
技术笔记:ROS中测试机器人里程计信息
|
5月前
|
安全 机器人 智能硬件
机器人技术的发展与应用前景广阔,涉及到多个领域和行业
机器人技术的发展与应用前景广阔,涉及到多个领域和行业
|
6月前
|
NoSQL 机器人 Windows
ROS机器人编程技术控制两只小海龟的编队运动
ROS机器人编程技术控制两只小海龟的编队运动
230 1