【AI系统】谷歌 TPU v3 POD 形态

简介: TPU v3 是 TPU v2 的增强版,主要改进包括:MXU 数量翻倍至 4 个,时钟频率提升 30%,内存带宽扩大 30%,容量翻倍,芯片间带宽增加 30%,可连接节点数增至 4 倍。TPU v3 通过采用水冷系统,不仅提高了功率,还优化了温度管理,显著提升了计算能力和能效。TPU v3 Pod 由 1024 个 TPU v3 组成,算力达 100 PFLOPS,适用于大规模神经网络训练。

TPU v3 vs. TPU v2

  • TPU v3 实际上就是 TPU v2 的增强版。TPU v3 相比 TPU v2 有约 1.35 倍的时钟频率、ICI 贷款和内存带宽,两杯 MXU 数量,峰值性能提高 2.7 倍。在同样使用

  • 除了显眼的蓝色外,相比于 TPU v2,TPU v3 在只增大 10%体积的情况下增加了 MXU 的数量,从 2 个翻倍到了 4 个。同时 TPU v3 时钟频率加快了 30%,进一步加快了计算速度;同时内存带宽扩大了 30%,容量翻倍;此外芯片之间的带宽也扩大了 30%,可连接的节点数是之前的 4 倍。

TPUv1 TPUv2 TPUv3
Date introduced 2016 2017 2018
Process node 28 nm 16 nm 16 nm
Die size (mm²) 330mm 625mm 700mm
On-chip memory (MB) 28MB 64MB 64MB
Clock speed (MHz) 700MHz 700MHz 940MHz
Memory 8 GB DDR3 16 GB HBM 32 GiB HBM
Memory bandwidth 300 GB/s 700 GB/s 900 GB/s
TDP (W) 75 280 450
TOPS (Tera/Second) 92 180 360
TOPS/W 0.31 0.16 0.56

以上表格展示了 TPU v1,TPU v2 和 TPU v3 三代的具体参数。我们可以看到,虽然 TPU v3 和 v2 都采用了 16nm 的制程,但是在内存、频率、带宽等参数上相比 TPU v2 都有长足的进步。更重要的是,在能效方面,TPU v3 更是大幅领先于 TPU v2。背后的原因除了谷歌改进了芯片设计,对于深度学习场景有了更深和更广的优化面意外,最重要的一点就是 TPU v3 更好地管理了芯片的温度表现,用水冷代替风冷使得芯片更容易运行在合理温度之下。

下面这张图展示了 TPU v2 和 v3 的俯视图以及极度简化的结构。我们可以看到,左下角的 TPU v2 板卡上面有着四个芯片,散热全部依赖风冷,而 TPU v3 则使用水冷系统去管理四张芯片的温度,也就是这歌水冷系统为 TPU v3 提供了 1.6x 的功率。在这个基础上,TPUv3 又翻倍了 MXU 的数量,每个核心拥有了两个 MXU,并且扩大了 HBM 的大小,进一步强化了其计算能力。

07TPU301.png

基本概念澄清

在正式进入到我们对于 POD 的介绍之前,我们要先做一些概念澄清。现在我们做大模型的训练和推理都会有一个“集群”的概念。回到 2017-2018 年左右,Bert 出现之前,很多人是不相信一个模型需要用到一个集群进行训练的,因为当时很多的模型只需要单卡就能进行训练。而实际上的情况是,仅有(从当前的视角看)3 亿参数 Bert 在 4 个 TPUv3 Pod 上训练了整整四天,而当前各家的万亿参数的模型大部分都是用万卡的集群训练数个月的结果。

分布式架构 - 参数服务器

涉及到集群,我们在训练过程中就需要一个分布式的架构,在当时叫做参数服务器(Parameter Server)。在训练过程中,我们需要在正向传播和反向传播中得到损失值和相应的梯度,而这个计算的压力是分布在每一张计算卡上的,因此在计算结束后需要把从每一张卡的计算结果进行梯度聚合,最后一步再进行参数的更新和参数的重新广播。

那么这个过程可以用同步或者异步的方式进行同步:

【同步并行】:在全部节点的完成本次的通信之后再进行下一轮本地计算

  • 优点:本地计算和通信同步严格顺序话,能够容易地保证并行的执行逻辑于串行相同;
  • 缺点:本地计算更早的工作节点需要等待其他工作节点处理,很容易造成计算硬件的浪费。

【异步并行】:当前 batch 迭代完后与其他服务器进行通信传输网络模型参数

  • 优点:执行效率高,中间除了单机通信时间以外没有任何通信和执行之间的阻塞等待;
  • 缺点:网络模型训练不收敛,训练时间长,模型参数反复使用导致无法工业化。

POD 中的通信

超级计算机中,执行的大部分是神经网络模型的 DP(Data Parallel)计算,大量的数据被分成小块,然后分配给不同的计算节点进行处理。这种并行计算的一部分是权重更新时的通信过程,通常使用的是 all-reduce 操作,即所有节点将它们的部分计算结果汇总起来,以更新全局的权重。

在这样的环境下,出现了 Host Bound 和 Device Bound 的概念。Host Bound 指的是计算受到主机资源的限制,可能是由于通信或者其他的主机计算负载导致的。而 Device Bound 则是指计算受到设备资源的限制,比如节点的计算能力。

在集群环境中,由于大规模的神经网络模型需要处理大量的数据,并且需要进行复杂的计算,因此往往是设备资源受限制,这就使得 AI 应用在集群环境中更倾向于 Device Bound。

迎来 Supercomputer(Pod)

首先我们要定义一下什么叫做 Pod,谷歌官方给出的定义很简单:“TPU Pod 是一组通过专用网络连接在一起的连续 TPU 单元”,实际上也确实如此。相比于 TPU v1,初始设定为一个专用于推理的协处理器,由于训练场景的复杂性,TPU v2 和 v3 大幅度强化了芯片的互联能力,最主要的核心就是为了搭建这样的超大计算集群。

TPU v2 基板和 Pod 形态

结合着下面这张图,我们来看一下上一章我们讲过 TPU v2 的基板组成

07TPU302.png

  • A:四个 TPU v2 芯片和散热片

  • B:2 个 BlueLink 25GB/s 电缆接口。其中 BlueLink 是 IBM BlueLink 端口协议,每 Socket 25Gb/s 的带宽,主要是提供 NPU 或是 TPU 之间的网络互联。

  • C:Intel 全路径体系结构(OPA)电缆。其中 OPA 为英特尔 Intel Omni-Path Architecture(OPA)互联架构,与 InfiniBand 相似。

  • D:电路板电源连接器

  • 支持两种网络配置,分别问 10Gbps 以太网和 100Gbps Intel OPA 连接

下面两张图,左边是 tpu v2 的基板,右边是 TPU v2 Pod 形态,每个机柜中有 64 个 CPU 板和 64 个 TPU 板,共有 128 个 CPU 芯片和 256 个 TPU v2 芯片。中间两台蓝色的机器最大可以搭载 256 块 TPU v2 的芯片,而左右两边分别是 CPU 集群,根据下图的标注,来简单看一下 TPU v2 Pod 的基本架构。

  • A 和 D:CPU 机架

  • B 和 C:TPU v2 机架

  • 蓝色框:电源管理系统(UPS)

  • 红色框:电源接口

  • 绿色框:机架式网络交换机和机架式交换机顶部,这部分更多的是网络模块

07TPU303.png

存储

在 TPU v2 机柜中,看不到任何存储模块。由数据中心网络连接至 CPU,同时没有任何光纤连接至机柜 B 和 C 的 TPU 集群,而 TPU v2 板上也没有任何网络连接。或许这正是下图中机柜上方大量蓝色光纤存在的原因。

机柜

我们不难发现,TPU v2 Pod 的机架排列紧凑,主要是为了避免信号衰减带来问题,BlueLink 或 OPA 的铜缆和光纤长度不能太长,因此 TPU 集群在中间,CPU 在两侧的方式排布。

TPU v3 基板和 Pod 形态

看完 v2,我们再来看一下 TPU v3 的基板组成

07TPU304.png

  • A:四个 TPU v2 芯片和液冷散热管;
  • B:2 个 BlueLink 25GB/s 电缆接口
  • C:Intel 全路径体系结构(OPA)电缆
  • D:电路板电源连接器
  • 支持两种网络配置,分别问 10Gbps 以太网和 100Gbps Intel OPA 连接

从下面的 TPU v3 Pod 的形态中我们就可以看到,相比于 TPU v2 Pod,它的规模大了非常多,有了更多的铜管和电缆,并且在芯片规模上整整大了 4 倍。TPU v3 Pod(1024 chips):

07TPU305.png

虚拟架构图

下面是虚拟架构图,整体的架构图也是比较明显的。AI 框架通过 RPC 远程连接到 TPU Host,基于 CPU 去控制 TPU 去实现真正的互联运作执行。

07TPU306.png

POD 总结

  • TPU v2 的技术革新:谷歌的 TPU v2 通过增加核间互连结构(ICI),使得最多 256 个 TPU v2 能够组成一个高效的超级计算机。这种结构支持高效的大规模数据处理,尤其适合神经网络的训练。

  • TPU v3 的性能提升:谷歌进一步扩展其技术,通过组合 1024 个 TPU v3 创建了 TPU POD 超级计算机。该服务器采用水冷系统,功率提升高达 1.6 倍,而模具尺寸仅比 TPU v2 增加 6%。

  • 高效的集群构建:TPU v2 集群利用交换机提供的虚拟电路和无死锁路由功能,加上 ICI 结构,形成了高效的 2D tours。这种配置提供了 15.9T/s 的平分带宽,相比传统的集群组网,省去了集群网卡、交换机的成本,以及与集群 CPU 的通信延迟。

现在我们对比一下 TPU v2 和 v3 Pod,最大的区别就在算力上:TPU v2 有 256 块 TPU v2 组成,算力为 11.5 PFLOPS;Tpu v3 则由 1024 块 TPU v3 芯片组成,算力为 100 PFLOPS。这也就是为什么我们一直在说,TPU v3 是一个 TPU v2 的强化版,最本质的原因就是两者在核心架构上本质的区别没有那么明显,而主要的提升实际上是提升了规模化的能力。

POD 通信方式

我们之前讨论到,在分布式机器学习中,异步训练和同步训练是两种主要的训练方式。异步训练理论上可以提供更快的速度,因为它允许每个节点独立更新模型权重,从而最大化计算效率。然而,在实际应用中,异步训练的特性以及分散的权重更新可能导致参数服务器与工作节点之间的带宽成为计算瓶颈。

相比之下,同步训练的关键在于平衡计算和通信两个步骤。在不同的学习节点之间,这两个步骤会调整权重。系统的性能受到最慢计算节点和网络中最慢消息传递速度的限制。因此,一个快速的网络连接对于实现快速训练至关重要。

谷歌在 TPU v2/v3 Pod 中采用了 2D Torus 网络结构,这种结构允许每个 TPU 芯片与相邻的 TPU 芯片直接连接,形成一个二维平面网络。这种设计减少了数据在芯片间传输时的通信延迟和带宽瓶颈,从而提高了整体的计算效率。基于此,谷歌优化了同步训练,在同等资源条件下,通过避免对参数服务器的依赖,通过 all reduce 的方法,最终在性能上达到对于异步 SGD 计算效率的领先。

07TPU307.png

目录
相关文章
|
2天前
|
人工智能 前端开发 小程序
2024年12月30日蜻蜓蜻蜓AI工具系统v1.0.0发布-优雅草科技本产品前端源代码已对外开源可免费商用-优雅草老八
2024年12月30日蜻蜓蜻蜓AI工具系统v1.0.0发布-优雅草科技本产品前端源代码已对外开源可免费商用-优雅草老八
2024年12月30日蜻蜓蜻蜓AI工具系统v1.0.0发布-优雅草科技本产品前端源代码已对外开源可免费商用-优雅草老八
|
6天前
|
人工智能 自然语言处理 并行计算
ASAL:Sakana AI 联合 OpenAI 推出自动探索人工生命的系统,通过计算机模拟生命进化的过程
ASAL 是由 Sakana AI 联合 OpenAI 等机构推出的自动化搜索人工生命系统,基于基础模型实现多种搜索机制,扩展了人工生命研究的边界。
52 1
ASAL:Sakana AI 联合 OpenAI 推出自动探索人工生命的系统,通过计算机模拟生命进化的过程
|
16天前
|
人工智能 安全 算法
CAMEL AI 上海黑客松重磅来袭!快来尝试搭建你的第一个多智能体系统吧!
掌握多智能体系统,🐫 CAMEL-AI Workshop & 黑客马拉松即将启航!
CAMEL AI 上海黑客松重磅来袭!快来尝试搭建你的第一个多智能体系统吧!
|
9天前
|
机器学习/深度学习 人工智能 搜索推荐
AI在电子商务中的个性化推荐系统:驱动用户体验升级
AI在电子商务中的个性化推荐系统:驱动用户体验升级
64 17
|
9天前
|
人工智能 安全 机器人
OpenAI重拾规则系统,用AI版机器人定律守护大模型安全
在人工智能领域,大语言模型(LLM)展现出强大的语言理解和生成能力,但也带来了安全性和可靠性挑战。OpenAI研究人员提出“规则基于奖励(RBR)”方法,通过明确规则引导LLM行为,确保其符合人类价值观和道德准则。实验显示,RBR方法在安全性与有用性之间取得了良好平衡,F1分数达97.1。然而,规则制定和维护复杂,且难以完全捕捉语言的多样性。论文:https://arxiv.org/pdf/2411.01111。
50 13
|
13天前
|
机器学习/深度学习 传感器 人工智能
AI视频监控系统在养老院中的技术实现
AI视频监控系统在养老院的应用,结合了计算机视觉、深度学习和传感器融合技术,实现了对老人体征、摔倒和异常行为的实时监控与分析。系统通过高清摄像头和算法模型,能够准确识别老人的动作和健康状况,并及时向护理人员发出警报,提高护理质量和安全性。
80 14
|
5天前
|
机器学习/深度学习 传感器 人工智能
开源AI视频监控系统在监狱安全中的应用——实时情绪与行为分析、暴力预警技术详解
针对监狱环境中囚犯情绪波动和复杂人际互动带来的监控挑战,传统CCTV系统难以有效预警暴力事件。AI视频监控系统基于深度学习与计算机视觉技术,实现对行为、情绪的实时分析,尤其在低光环境下表现优异。该系统通过多设备协同、数据同步及自适应训练,确保高精度识别(95%以上)、快速响应(<5秒),并具备24小时不间断运行能力,极大提升了监狱安全管理的效率与准确性。
|
9天前
|
机器学习/深度学习 存储 人工智能
基于AI的实时监控系统:技术架构与挑战分析
AI视频监控系统利用计算机视觉和深度学习技术,实现实时分析与智能识别,显著提升高风险场所如监狱的安全性。系统架构包括数据采集、预处理、行为分析、实时决策及数据存储层,涵盖高分辨率视频传输、图像增强、目标检测、异常行为识别等关键技术。面对算法优化、实时性和系统集成等挑战,通过数据增强、边缘计算和模块化设计等方法解决。未来,AI技术的进步将进一步提高监控系统的智能化水平和应对复杂安全挑战的能力。
|
13天前
|
机器学习/深度学习 人工智能 算法
【AI系统】AI 框架之争
本文介绍了AI框架在数学上对自动微分的表达和处理,以及其在多线程算子加速、GPU/NPU支持、代码编译优化等方面的技术挑战。文章详细梳理了AI框架的发展历程,从萌芽阶段到深化阶段,探讨了不同阶段的关键技术和代表性框架。同时,文章展望了AI框架的未来趋势,包括全场景支持、易用性提升、大规模分布式支持和科学计算融合。
38 0
|
13天前
|
缓存 人工智能 负载均衡
AI革新迭代:如何利用代理IP提升智能系统性能
在人工智能快速发展的背景下,智能系统的性能优化至关重要。本文详细介绍了如何利用代理IP提升智能系统性能,涵盖数据加速与缓存、负载均衡、突破地域限制、数据传输优化和网络安全防护等方面。结合具体案例和代码,展示了代理IP在实际应用中的价值和优势。
30 0