魔搭社区与函数计算:高效部署开源大模型的文本生成服务体验

本文涉及的产品
函数计算FC,每月15万CU 3个月
简介: 在数字化时代,人工智能技术迅速发展,开源大模型成为重要成果。魔搭社区(ModelScope)作为开源大模型的聚集地,结合阿里云函数计算,提供了一种高效、便捷的部署方式。通过按需付费和弹性伸缩,开发者可以快速部署和使用大模型,享受云计算的便利。本文介绍了魔搭社区与函数计算的结合使用体验,包括环境准备、部署应用、体验使用和资源清理等步骤,并提出了改进建议。

在当今数字化时代,人工智能(AI)技术正以前所未有的速度改变着我们的生活方式和工作模式。其中,开源大模型作为AI领域的重要成果,为各行各业提供了强大的技术支持。魔搭社区(ModelScope)作为开源大模型的聚集地,为广大开发者提供了一个便捷的平台。通过结合函数计算,我们不仅能够快速部署这些大模型,还能利用函数计算的诸多优势,如按使量付费和弹性伸缩,高效地为用户提供文本生成服务。以下是我对魔搭社区与函数计算结合使用的测评体验。

一、初识魔搭社区与函数计算

魔搭社区(ModelScope)是一个开放的AI模型共享平台,汇聚了众多优质的开源大模型。这些模型涵盖了自然语言处理、计算机视觉、语音识别等多个领域,为开发者提供了丰富的选择。无论是想要进行文本生成、图像识别还是语音识别,都能在这里找到合适的模型。
image.png

函数计算则是一种无服务器计算服务,它允许开发者在不管理服务器的情况下运行代码。函数计算会根据实际请求量自动伸缩计算资源,并按实际使用量收费,极大地降低了运维成本和时间成本。可以将更多的精力投入到算法优化和业务逻辑上,而无需担心底层资源的配置和管理。
image.png

二、基于函数计算快速部署开源大模型

1、 方案概览

只需10分钟就可以将开源大模型轻松部署到阿里云函数计算上,畅享大模型的强大功能。无需拥有或维护昂贵的GPU资源,按需付费的模式更能帮助您节省成本,尽情体验云计算带来的便利与灵活性。
image.png

2、 环境准备

1)注册阿里云账号 2)开通函数计算 3)开通文件存储NAS服务 4) 注册ModelScope账号,并绑定阿里云账号。

在魔搭访问(https://www.modelscope.cn/my/myaccesstoken) 按照下图绑定阿里云账号。
image.png
image.png
image.png

3、 部署应用

1)在魔搭访问(https://www.modelscope.cn/my/myaccesstoken) 获取令牌。
image.png

2)访问函数计算应用模板

  • 参考图片模型来源选择ModelScope;
  • 模型ID填入ZhipuAI/chatglm3-6b;
  • 模型版本填入v1.0.2;
  • 地域目前仅支持华东1(杭州)或华东2(上海),选择华东2(上海);
  • 模型任务类型填入chat;
  • Access Token 填入ModelScope 的访问令牌。
  • 其余配置项保持默认值即可,单击创建应用。
    image.png

创建中, 创建时间2024年11月2日 20:30:31,完成时间2024年11月2日 20:38:37 耗时为8分钟。
image.png

3)创建成功后,为应用开启闲置预留模式。配置预留实例,可以有效避免因实例冷启动导致的请求延迟问题。同时,可以配置预留实例的弹性伸缩规则如定时伸缩和水位伸缩,提高实例使用率,解决资源浪费问题。

  • 应用部署完成后,在资源信息区域单击后缀为model-app-func的函数名称跳转至函数详情页。
    image.png
    image.png

  • 在函数详情页,选择配置页签,在左侧导航栏,选择预留实例,然后单击创建预留实例数策略。
    image.png

  • 在创建预留实例数策略页面,版本和别名选择为LATEST,预留实例数设置为1,启用闲置模式,然后单击确定。
    image.png

  • 等待容器实例成功启动后,可以看到当前预留实例数为1,且显示已开启闲置模式字样,表示闲置预留实例已成功启动
    image.png

整个部署过程非常顺畅耗时8分钟,只需要关注模型的选择、版本和任务类型,无需担心底层资源的配置和管理。函数计算平台会根据实际请求量自动伸缩计算资源,确保服务的稳定性和高效性。

三、体验使用LLM应用

部署完成后,可以使用函数计算应用提供的域名访问服务,与模型进行对话。

1、在环境详情页面,点击访问域名右侧的域名,使用LLM应用。
image.png
image.png

2、输入文本信息,然后单击Submit,您可以看到模型的回答结果。
image.png
image.png

image.png

初次的处理结果每次交互大概1分钟左右。

四、资源清理

1、删除ModelScope使用的函数

登录函数计算控制台,在左侧导航栏,单击应用。在应用页面,找到目标应用,单击右侧操作列的删除应用。
image.png

image.png

删除应用提示失败
image.png

需要手动删除函数和域名

image.png

image.png

image.png
image.png

2、登录NAS文件存储控制台,在左侧导航栏选择文件系统 > 文件系统列表。在文件系统列表,找到目标文件系统,在其右侧操作列,然后单击删除。
image.png
image.png
image.png

五、总结

通过本次对魔搭社区与函数计算结合使用的体验,深刻感受到了开源大模型和无服务器计算技术的强大魅力。这些技术不仅为开发者提供了丰富的选择和便捷的工具,还极大地提高了服务的稳定性和高效性。

关于本次实践体验的反馈和建议如下:

1、本次实践中配置了预留实例,但没有很好体现出预留实例的功能及作用,可以增加下配置预留实例和不配置预留实例的使用对比。

2、在部署过程中函数应用创建时在日志里有报错,但可以部署成功,暂时也没有影响使用,可以看下是否需要优化。


Duration: 342752.33 ms, Billed Duration: 342753 ms, Memory Size: 16384 MB, Max Memory Used: 11980.74 MB
========= FC invoke Logs end =========

Invoke instanceId: c-67261bcd-1663628b-aa8652a176d2
Code Checksum: 13447116201843826969
Qualifier: LATEST
RequestId: 1-67261bcd-169f5165-95f2f369919d
Error Type: InvocationError

Invoke Result:
{
    "errorMessage": "File pytorch_model.bin.index.json download incomplete, content_length: None but the                     file downloaded length: 20437, please download again",
    "errorType": "FileDownloadError",
    "stackTrace": [
        [
            "File \"/code/index.py\"",
            "line 13",
            "in handler",
            "snapshot_download (model_id =model_id,"
        ],
        [
            "File \"/code/modelscope/hub/snapshot_download.py\"",
            "line 153",
            "in snapshot_download",
            "http_get_file("
        ],
        [
            "File \"/code/modelscope/hub/file_download.py\"",
            "line 319",
            "in http_get_file",
            "raise FileDownloadError(msg)"
        ]
    ]
}
AI 代码解读

image.png

3、在清理函数资源的时候,发生了报错。需要手动删除函数和域名。针对这部分可以补充在清理资源部分——删除失败如何处理。

image.png

image.png

image.png

4、整个体验的场景中没有展现出函数计算的弹性伸缩优势,可以增加这部分的场景验证。比如模拟对话量请求量增加时,平台会自动增加计算资源以满足需求;当请求量减少时,平台会自动释放多余的计算资源以降低成本。

5、在实际生产中会使用多个大模型,如果需要在不同的模型之间切换,是否可以在当前的部署函数应用实现,还是每一个模型都需要部署一个函数应用。

6、若自己来选择大模型的配置,函数计算页面提示中模型ID、模型版本、模型任务类型获取方式不够详细,希望可以增加这个参数的获取魔搭具体页面截图。

image.png

image.png

7、什么情况下需要自己修改显存大小和内存大小?
image.png

8、访问模型的时候,在处理对话的期间,右上角的数字一直在增长,这是处理的时间吗?还是什么值,作用是什么?

image.png

相关实践学习
【文生图】一键部署Stable Diffusion基于函数计算
本实验教你如何在函数计算FC上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。函数计算提供一定的免费额度供用户使用。本实验答疑钉钉群:29290019867
建立 Serverless 思维
本课程包括: Serverless 应用引擎的概念, 为开发者带来的实际价值, 以及让您了解常见的 Serverless 架构模式
目录
打赏
0
7
15
1
436
分享
相关文章
DeepSeek 模型快速体验,魔搭+函数计算一键部署模型上云
DeepSeek模型近期备受关注,其开源版本DeepSeek-V3和DeepSeek-R1在多个基准测试中表现出色,性能比肩OpenAI顶尖模型。为降低本地部署门槛,Modelscope社区推出DeepSeek-R1-Distill-Qwen模型的一键部署服务,支持函数计算FC平台的闲置GPU实例,大幅降低成本。用户可选择不同参数量的小模型进行快速部署和推理,体验DeepSeek的强大性能。
DeepSeek 模型快速体验,魔搭+函数计算一键部署模型上云
基于函数计算一键部署 AI 陪练,快速打造你的专属口语对练伙伴
AI 口语学习涵盖发音训练、对话交流、即时反馈、个性化场景模拟和流利度提升等。本方案以英语口语学习的场景为例,利用函数计算 FC 部署 Web 应用,结合智能媒体服务(AI 实时互动)的 AI 智能体和百炼工作流应用,实现英语口语陪练。
云原生应用实战:基于阿里云Serverless的API服务开发与部署
随着云计算的发展,Serverless架构日益流行。阿里云函数计算(Function Compute)作为Serverless服务,让开发者无需管理服务器即可运行代码,按需付费,简化开发运维流程。本文从零开始,介绍如何使用阿里云函数计算开发简单的API服务,并探讨其核心优势与最佳实践。通过Python示例,演示创建、部署及优化API的过程,涵盖环境准备、代码实现、性能优化和安全管理等内容,帮助读者快速上手Serverless开发。
DeepSeek 快速体验,魔搭+函数计算一键部署模型上云
对于期待第一时间在本地进行使用的用户来说,尽管 DeepSeek 提供了从 1.5B 到 70B 参数的多尺寸蒸馏模型,但本地部署仍需要一定的技术门槛。对于资源有限的用户进一步使用仍有难点。为了让更多开发者第一时间体验 DeepSeek 模型的魅力,Modelscope 社区 DeepSeek-R1-Distill-Qwen 模型现已支持一键部署(SwingDeploy)上函数计算 FC 服务,欢迎开发者立即体验。
312 12
基于函数计算一键部署 AI 陪练,快速打造你的专属口语对练伙伴
基于函数计算一键部署 AI 陪练,快速打造你的专属口语对练伙伴
云大使 X 函数计算 FC 专属活动上线!享返佣,一键打造 AI 应用
如今,AI 技术已经成为推动业务创新和增长的重要力量。但对于许多企业和开发者来说,如何高效、便捷地部署和管理 AI 应用仍然是一个挑战。阿里云函数计算 FC 以其免运维的特点,大大降低了 AI 应用部署的复杂性。用户无需担心底层资源的管理和运维问题,可以专注于应用的创新和开发,并且用户可以通过一键部署功能,迅速将 AI 大模型部署到云端,实现快速上线和迭代。函数计算目前推出了多种规格的云资源优惠套餐,用户可以根据实际需求灵活选择。
Serverless + AI 让应用开发更简单,加速应用智能化
Serverless + AI 让应用开发更简单,加速应用智能化
阿里云 EMR Serverless Spark 在微财机器学习场景下的应用
面对机器学习场景下的训练瓶颈,微财选择基于阿里云 EMR Serverless Spark 建立数据平台。通过 EMR Serverless Spark,微财突破了单机训练使用的数据规模瓶颈,大幅提升了训练效率,解决了存算分离架构下 Shuffle 稳定性和性能困扰,为智能风控等业务提供了强有力的技术支撑。
163 15
基于阿里云 EMR Serverless Spark 版快速搭建OSS日志分析应用
基于阿里云 EMR Serverless Spark 版快速搭建OSS日志分析应用
7分钟玩转 AI 应用,函数计算一键部署 AI 生图大模型
人工智能生成图像(AI 生图)的领域中,Stable Diffusion WebUI 以其强大的算法和稳定的输出质量而闻名。它能够快速地从文本描述中生成高质量的图像,为用户提供了一个直观且高效的创作平台。而 ComfyUI 则以其用户友好的界面和高度定制化的选项所受到欢迎。ComfyUI 的灵活性和直观性使得即使是没有技术背景的用户也能轻松上手。本次技术解决方案通过函数计算一键部署热门 AI 生图大模型,凭借其按量付费、卓越弹性、快速交付能力的特点,完美实现低成本,免运维。