企业介绍:
业务效果:
使用产品:
- 源自阿里巴巴的数据中台实践 (免费试用、了解更多>>)
- 连续5年入选Gartner的智能BI产品(免费试用、了解更多>>)
正文内容:
业务挑战
解决方案
01 启动数据中台:切入核心业务场景, 建设统一数据指标
2018年,雅戈尔主动拥抱数据中台概念,并于2019年正式启动数据中台建设。目前,企业已基于数据中台串联起从面料研发、生产制造到销售终端的智慧营销的各业务系统,并通过数据建设与治理,在业务应用过程中提供了决策依据、实现了效率提升。
在企业数字化转型过程中,技术往往不是最大挑战,例如「数据质量」的治理,数据本身不会骗人,但难以统一的数据标准、不规范的业务流程,都可能造成数据污染,以至于无法为业务决策提供实际参考价值。
雅戈尔业务的复杂性,也加剧了数据需求的复杂程度和处理难度——哪怕只是一项“营收金额”,由于需要计入商场扣点、财务扣税等因素,一旦各渠道的数据口径不同,每天都会形成高达数十万元的数据偏差。
尤其是服装企业们都相当看重的几组指标,“四率二效”:“四率”分别指销售增长率、毛利率、成本费用率和回收率;二效则指人效跟平效。仅其中的平效(指门店单位面积下的平均营业额,即销售额除以门店面积),各门店可能会分别上报建筑面积、营业面积或是陈列面积。甚至有门店为了获得更高的平效,将面积数字报小。各方利益和主观意愿掺杂,使得数据治理因此成为企业数据建设中最难的一环。
因此,大数据部门花费了大量的时间打通组织、商品、人员等数据,并针对各项维度和400多个指标做了清晰的梳理。在此过程中,有两大关键:
1. 统一数据指标。
2. 通过规范业务流程,梳理“利益边界”——即理清楚一件事该由谁做,做到什么程度。
在统一数据指标时,大数据部门梳理了各业务流程中的关键字段,并根据业务需求给出细致、明确的数据口径:如“季节”,会根据业务需求将春夏秋冬细分为“春一”“春二”“春三”等阶段;而“门店面积”也会伴随装修情况及时更新。如业务部门对口径或标准存疑,该数据指标就会交给雅戈尔数据决策委员会(主要成员为财务)评判,直到达成一致意见,并会将最终结果在公司内部公示。自数据中台建立以来,数据指标平均每个月都会迭代,让数据反馈无限接近于管理诉求和业务应用的需求
“数据中台从来不是昙花一现或脑门一热的项目,必须是一个长期过程,”雅戈尔集团CIO王歆表示。同时,王歆还谈到,雅戈尔未来三到五年的规划,包括了以系统集成为命题、以AI贯穿为主线、以行为数据为洞察、以碎片时间为生产。
在其数据源、中台和应用三层数据架构中,瓴羊Dataphin和Quick BI分别在数据中台层和应用层发挥了重要作用。
在数据应用层,雅戈尔灵活、多视角的数据门户正基于Quick BI实现。作为分析型BI报表工具,它满足了企业各层级日常获取数据的需求,大大降低了员工使用数据的门槛。在中台层,雅戈尔通过Dataphin整合了共16个系统,900多个报表和400多组指标。
02 门店全景视角:辅助管理层决策、减轻店长行政工作
过去难以看清全貌的数据环境下,管理层在做出决策前,往往需要带一摞报表巡店,才能了解真实的门店情况,如开店投入、装修成本、人员流动等;而店长们既承担业绩压力,又需要向下管理、向上汇报——这类行政工作往往占用大量时间:
第一,需要手动录入和上报销售情况;第二,汇报所需数据分散在各个业务系统中(如人事数据归集在HR系统中,物流数据归集在物流系统内),翻找费时、对数据技术要求高;第三,所需数据受权限影响,无法进入系统。
而雅戈尔搭建数据中台后,上至管理层、下至门店导购都有了更便捷的数据获取方式。在其数据门户中,共有三种数据视角:
1. 按数据特性划分。这是大部分企业都会采用的数据划分方式,将销售、物流、财务、会员、审计和制造等各领域的报表,各自归集一起。
2. 自定义报表。员工可根据需求自由拖拽字段。
3. 围绕品牌各层级视角展开的主题门户。品牌管理层可查看属于品牌自己的销售、物流等报表,店长也有围绕门店展开的360°全景视角。2023年,雅戈尔还借助NLP技术推出的大模型智能BI应用Chat BI,让员工通过搜索就能获得数据。
一个以门店为中心视角的全景数据,既方便了管理层了解门店情况,也减轻了店长60%-70%的日常基础行政工作。此外,店长们在为导购进行排班时,通过数据就能很快判断出对方更适合排在白班还是晚班、更适合销售正价品还是折扣品——减少“人”的干预,既能增加决策的正确率,也得以让他们将精力聚焦到打磨销售话术、提升销售技巧上,最终提升整体门店业绩。
Dataphin是瓴羊旗下的智能数据建设与治理平台,是阿里巴巴多年内部数据建设与治理实践及方法论的产品化输出,致力于通过一站式智能化的数据建设及治理能力,帮助企业构建起生产经济、质量可靠、安全稳定、消费便捷的企业级数据资产。
了解更多: Dataphin智能建设与治理 >>
获取资料:Dataphin产品白皮书 >>