计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-09-28(上)

本文涉及的产品
NLP自然语言处理_高级版,每接口累计50万次
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_基础版,每接口每天50万次
简介: 计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-09-28(上)

前言

这期内容中,我们对近期大模型+多模态,大模型 + 教育,大模型+医疗几个方向的研究工作做简要介绍。

1. Cognitive phantoms in LLMs through the lens of latent variables

Authors: Sanne Peereboom, Inga Schwabe, Bennett Kleinberg

https://arxiv.org/abs/2409.15324

从潜在变量视角看大型语言模型中的认知幻影

摘要

本研究探讨了大型语言模型(LLMs)的行为,特别是它们在心理测量问卷中表现出的人类特质。研究者通过比较人类与三种LLMs的潜在人格结构,发现为人类设计的问卷可能无法有效测量LLMs中的相似结构,甚至这些结构可能根本不存在于LLMs中。研究结果强调了避免在LLMs中追逐认知幻影的必要性。

研究背景

随着LLMs在现实世界中应用的增加,理解其行为变得尤为重要。它们的规模和复杂性使得传统评估方法变得复杂,因此需要采用心理学领域的新方法。近期的研究表明LLMs在心理测试中表现出类似人类的特质,但这种方法的有效性存在问题。

问题与挑战

  • 问题: 如何有效评估LLMs的心理特质?
  • 挑战: 现有的心理测量工具是否适用于LLMs,以及这些工具测量的潜在特质是否真实存在于LLMs中。

创新点

  • 使用两种经过验证的性格问卷对比人类与LLMs的潜在人格结构。
  • 探讨了问卷设计对于人类是否也适用于LLMs,并评估了这些构建在LLMs中的存在性。

算法模型

  • 模型: 使用了三种GPT模型(GPT-3.5-turbo-0125, GPT-4-0612, GPT-4-0125-preview)。
  • 方法: 通过比较人类样本和LLMs样本的潜在结构来进行验证性因子分析(CFA)和探索性因子分析(EFA)。

实验效果

  • 数据: 人类样本n=365,GPT-3.5-T样本n=399,GPT-4样本n=387。
  • 结论: LLMs的问卷响应显示出随意性,与人类样本的潜在结构大不相同。这表明我们不能有效地使用现有的问卷测量LLMs中的人格特质,或者这些特质根本不存在于LLMs中。

推荐阅读指数:

★★★☆☆

  • 推荐理由: 这篇文章为理解LLMs的行为提供了新的视角,并对现有的心理测量方法在LLMs中的应用提出了质疑。

2. Steward: Natural Language Web Automation

Authors: Brian Tang, Kang G. Shin

https://arxiv.org/abs/2409.15441

Steward: 自然语言网页自动化

摘要

本文介绍了Steward,这是一款新型的大型语言模型(LLM)驱动的网络自动化工具,旨在为网站交互提供一种经济、可扩展的端到端解决方案。Steward通过接收自然语言指令,反应性地规划和执行一系列网站操作,直到任务完成,使其成为开发人员和研究人员实用的工具。Steward在执行动作时表现出高效率,并且通过缓存机制进一步提高了性能。

研究背景

大型语言模型(LLMs)在AI助手领域展现出了卓越的能力,但它们在不同网站和网页环境中的交互能力尚未充分探索。现有的浏览器自动化框架如Selenium、Puppeteer和Playwright在执行大规模或动态网站交互任务时存在局限性。

问题与挑战

  • 问题: 如何让LLMs有效地与各种网站和网页元素进行交互?
  • 挑战: 如何设计一个能够理解自然语言指令并自动执行网页任务的系统。

创新点

  • 提出了一种结合LLMs和浏览器自动化的工具,允许自然语言驱动的网站交互。
  • 设计了一种高效的缓存机制,显著提高了任务执行的速度和成本效率。
  • 实现了一个端到端的系统,可以自动检测任务完成状态并终止操作。

算法模型

  • 模型: 使用了OpenAI的GPT-3.5 Turbo、GPT-4 Turbo和GPT-4 Vision模型。
  • 方法: Steward通过接收自然语言指令,利用LLMs生成网页的高级描述,然后通过筛选和清理HTML元素,选择与用户指令最匹配的UI元素进行交互。

实验效果

  • 数据: 使用Mind2Web数据集进行评估,包含2,350个自然语言任务和超过10,000个记录的动作。
  • 结论: Steward在执行任务时表现出了40%的成功率,平均完成56%的步骤,在检测到任务完成状态时正确终止的比率为71%。在成本方面,Steward平均每次任务的成本为0.18美元,中位数为8.52秒/动作。

推荐阅读指数:

★★★★☆

  • 推荐理由: Steward的研究为LLMs在网页自动化领域的应用提供了新的思路和方法。它不仅展示了LLMs在理解自然语言指令和执行网页任务方面的潜力,还通过缓存机制提高了性能。

3. RAM2C: A Liberal Arts Educational Chatbot based on Retrieval-augmented Multi-role Multi-expert Collaboration

Authors: Haoyu Huang, Tong Niu, Rui Yang, Luping Shi

https://arxiv.org/abs/2409.15461

RAM2C:一种基于检索增强的多角色多专家协作的文科教育聊天机器人

摘要

本研究聚焦于如何利用大型语言模型(LLMs)改进文科教育对话,尤其是在中文阅读教学中。研究者们提出了一个名为RAM2C(Retrieval-augmented Multi-role Multi-expert Collaboration)的框架,以自动生成符合人文教育要求(Humanized communication, Teaching expertise, Safety-ethics,简称HTS)的对话数据集。该框架通过多角色多专家协作,使用改进的检索增强生成技术,显著提升了LLMs在教育对话中的表现。

研究背景

在文科教育对话中,除了专业知识,人性化沟通、教学技巧和安全伦理同样重要。然而,收集符合HTS标准的教学对话数据成本高昂,现有的LLMs在教学对话中的表现还未达到人类标准。

问题与挑战

  • 如何生成符合HTS要求的高质量教育对话数据。
  • 如何提升LLMs在文科教育对话中的个性化、教学专长和伦理安全表现。

创新点

  • 提出RAM2C框架,通过多角色多专家协作自动生成高质量教育对话数据。
  • 设计了基于多源知识库的检索增强专家系统,通过群体反思实现多维度参考价值检索增强。
  • 在文科教育对话中,通过人偏好对齐实现LLMs的HTS偏好对齐。

算法模型

  • 模型: RAM2C框架整合了多个LLMs,包括教师、教育心理学家和伦理安全专家。
  • 方法: 使用检索增强技术,通过不同知识库增强LLMs,形成多专家组,生成符合HTS标准的教育对话数据集,并对LLMs进行微调。

实验效果

  • 数据: 使用RAM2C生成的3,500个对话样本进行微调。
  • 结论: 微调后的模型在HTS三个维度上的表现均优于原始模型,尤其是在人性化沟通和教学专长方面。与主流中文商业模型GLM-4相比,RAM2C赋能的GLM-4展现了最高水平的表现。

推荐阅读指数:

★★★★☆

  • 推荐理由: 通过创新的多角色多专家协作和检索增强技术,显著提升了LLMs在教育对话中的个性化和教学质量,对于教育领域的研究者和实践者来说,这篇文章值得一读。


计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-09-28(中)+https://developer.aliyun.com/article/1628909

目录
打赏
0
0
0
0
16
分享
相关文章
|
12天前
|
内网桌面监控软件深度解析:基于 Python 实现的 K-Means 算法研究
内网桌面监控软件通过实时监测员工操作,保障企业信息安全并提升效率。本文深入探讨K-Means聚类算法在该软件中的应用,解析其原理与实现。K-Means通过迭代更新簇中心,将数据划分为K个簇类,适用于行为分析、异常检测、资源优化及安全威胁识别等场景。文中提供了Python代码示例,展示如何实现K-Means算法,并模拟内网监控数据进行聚类分析。
32 10
Transformer打破三十年数学猜想!Meta研究者用AI给出反例,算法杀手攻克数学难题
《PatternBoost: Constructions in Mathematics with a Little Help from AI》提出了一种结合传统搜索算法和Transformer神经网络的PatternBoost算法,通过局部搜索和全局优化交替进行,成功应用于组合数学问题。该算法在图论中的Ramsey数研究中找到了更小的反例,推翻了一个30年的猜想,展示了AI在数学研究中的巨大潜力,但也面临可解释性和通用性的挑战。论文地址:https://arxiv.org/abs/2411.00566
83 13
人工智能平台年度技术趋势
阿里云智能集团研究员林伟在年度技术趋势演讲中,分享了AI平台的五大方面进展。首先,他介绍了大规模语言模型(LLM)训练中的挑战与解决方案,包括高效故障诊断和快速恢复机制。其次,探讨了AI应用和服务的普及化,强调通过优化调度降低成本,使AI真正惠及大众。第三,提出了GreenAI理念,旨在提高AI工程效率,减少能源消耗。第四,讨论了企业级能力,确保数据和模型的安全性,并推出硬件到软件的全面安全方案。最后,介绍了整合多项核心技术的Pai Prime框架,展示了阿里云在自主可控AI核心框架下的整体布局和发展方向。
解锁企业计算机监控的关键:基于 Go 语言的精准洞察算法
企业计算机监控在数字化浪潮下至关重要,旨在保障信息资产安全与高效运营。利用Go语言的并发编程和系统交互能力,通过进程监控、网络行为分析及应用程序使用记录等手段,实时掌握计算机运行状态。具体实现包括获取进程信息、解析网络数据包、记录应用使用时长等,确保企业信息安全合规,提升工作效率。本文转载自:[VIPShare](https://www.vipshare.com)。
40 1
深入探讨人工智能中的深度学习技术##
在本文中,我们将深入探讨深度学习技术的原理、应用以及未来的发展趋势。通过分析神经网络的基本结构和工作原理,揭示深度学习如何在图像识别、自然语言处理等领域取得突破性进展。同时,我们还将讨论当前面临的挑战和未来的研究方向,为读者提供全面的技术洞察。 ##
人工智能与未来医疗:AI技术在疾病诊断中的应用前景####
本文探讨了人工智能(AI)在现代医疗领域,尤其是疾病诊断方面的应用潜力和前景。随着技术的不断进步,AI正逐渐改变传统医疗模式,提高诊断的准确性和效率。通过分析当前的技术趋势、具体案例以及面临的挑战,本文旨在为读者提供一个全面的视角,理解AI如何塑造未来医疗的面貌。 ####
探索人工智能在现代医疗中的革新应用
本文深入探讨了人工智能(AI)技术在医疗领域的最新进展,重点分析了AI如何通过提高诊断准确性、个性化治疗方案的制定以及优化患者管理流程来革新现代医疗。文章还讨论了AI技术面临的挑战和未来发展趋势,为读者提供了一个全面了解AI在医疗领域应用的视角。
98 11
人工智能在医疗诊断中的应用与前景####
本文深入探讨了人工智能(AI)技术在医疗诊断领域的应用现状、面临的挑战及未来发展趋势。通过分析AI如何辅助医生进行疾病诊断,提高诊断效率和准确性,以及其在个性化医疗中的潜力,文章揭示了AI技术对医疗行业变革的推动作用。同时,也指出了数据隐私、算法偏见等伦理问题,并展望了AI与人类医生协同工作的前景。 ####
239 0
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等