同样是人工智能 客户在哪儿AI和GPT等大模型有什么不同

本文涉及的产品
Elasticsearch Serverless检索通用型,资源抵扣包 100CU*H
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
简介: 客户在哪儿AI生产的是企业全历史行为数据,同时还针对ToB企业,提供基于企业全历史行为数据的数据分析服务。

书接上回。为了统一回答朋友们的疑惑,此前的两篇文章,着重讲述了客户在哪儿AI的企业全历史行为数据和企业信息查询平台上的数据的区别,以及客户在哪儿AI的ToB获客服务和AI外呼机器人的获客服务的不同。本期接着讲——客户在哪儿AI VS 大模型(如GPT)。

笔者先带各位朋友简单复习一下“相对弱势”的客户在哪儿AI是干什么的,然后就直接进入对比。并且,我们会尽量使用白话来代替晦涩的术语,保你看的明白!

客户在哪儿AI生产的是企业全历史行为数据,同时还针对ToB企业,提供基于企业全历史行为数据的数据分析服务。具体来说,企业全历史行为数据按时间维度收录了企业及其各岗位负责人在什么地点、与什么人、做了什么事、收获了什么等所有可挖掘的行为。是连企业自己都没有的完整的企业行为数据库。当把很多的企业全历史行为数据聚在一起分析的时候,就能涌现出上帝视角般的营销洞察能力。其中的共性分析结果服务ToB市场部,个性分析结果服务销售部,整体洞察服务于决策层。

那么,同样是人工智能,客户在哪儿AI和GPT等大模型有着哪些不同:

1、任务不同,一个是信息生成,一个是信息抽取:GPT-4、文心一言等大模型属于生成式AI。它们都由全网的知识训练而成,会按提示词,也就是你对它的指令或关键词句,‌返回给你比较合适的回答;而“客户在哪儿AI”所专注的信息抽取和GPT截然不同。它学习的不是全网知识,而是特定领域知识较为丰富的数据标注专家教给它哪些是要它学会提取的信息。例如,“巴黎奥运选择与法国设计师马蒂厄·勒汉纽尔进行合作。”这句话中,客户在哪儿AI直接就会把“巴黎奥运 设计师 马蒂厄·勒汉纽尔”保存起来,而GPT是你要问它“巴黎奥运的设计师是谁?”它才会告诉你。

2、目的不同,一个是为了平权,一个是为了霸权:生成式AI已广泛服务于公众,尽管有的服务会收一点费用,但其本质,是让任何人都可以平等快速的获取到AI学会的任何知识,是一个伟大的知识平权的产品。但话说回来,在商业领域,人们追求的是“霸权”而非“平权”,即,拥有他人未知的信息或高于他人的认知。所以,GPT等大模型是个人办公的得力助手,但无法提供给你差异化的商业洞察,不是智囊。

相比之下,“客户在哪儿AI”在全网抽取用户指定的高价值商业信息,生成结构化的大数据。足够多的你的客户的数据和足够多的你的竞争对手的数据,会让你的洞察能力达到理论的极值。所以,在商业分析、ToB营销获客等领域,客户在哪儿AI才是更专业的存在。

相关文章
|
6天前
|
数据可视化 API Swift
全模态图像模型Nexus-Gen对齐GPT-4o!同时搞定,数据、训练框架、模型全面开源
OpenAI GPT-4o发布强大图片生成能力后,业界对大模型生图能力的探索向全模态方向倾斜,训练全模态模型成研发重点。
93 17
|
22天前
|
存储 人工智能 搜索推荐
如何用大模型+RAG 给宠物做一个 AI 健康助手?——阿里云 AI 搜索开放平台
本文分享了如何利用阿里云 AI 搜索开放平台,基于 LLM+RAG 的系统框架,构建“宠物医院AI助手”的实践过程。
224 14
|
13天前
|
机器学习/深度学习 人工智能 边缘计算
一文了解,炎鹊YNQUE-Xo1行业垂直领域AI大模型。
炎鹊科技推出的YNQUE-Xo1垂直领域AI大模型集群,重新定义了AI与产业深度融合的范式。通过数据工程、模型架构和训练策略三大维度,Xo1突破通用模型瓶颈,在专业场景中实现性能与效率跃升。其MoE架构、动态路由机制及三阶段优化策略,大幅提升参数利用率与可解释性。YNQUE-Xo1不仅在医疗、金融等领域测试中精度提升显著,还适配边缘计算,成为推动产业智能化升级的核心引擎,从“工具赋能”迈向“认知基础设施”。
|
2天前
|
存储 人工智能 运维
MoE大模型迎来“原生战友”:昇腾超节点重构AI基础设施
大模型训练中,MoE架构逐渐成为主流,但也面临资源利用率低、系统稳定性差、通信带宽瓶颈三大挑战。传统AI集群难以满足其需求,而“昇腾超节点”通过自研高速互联协议、软硬件协同调度、全局内存统一编址及系统稳定性提升等创新,实现384张卡协同工作,大幅提升训练效率与推理性能。相比传统方案,昇腾超节点将训练效率提升3倍,推理吞吐提升6倍,助力MoE模型在工业、能源等领域的规模化应用。5月19日的鲲鹏昇腾创享周直播将深度解析相关技术细节。
47 15
|
14天前
|
人工智能 并行计算 监控
在AMD GPU上部署AI大模型:从ROCm环境搭建到Ollama本地推理实战指南
本文详细介绍了在AMD硬件上构建大型语言模型(LLM)推理环境的全流程。以RX 7900XT为例,通过配置ROCm平台、部署Ollama及Open WebUI,实现高效本地化AI推理。尽管面临技术挑战,但凭借高性价比(如700欧元的RX 7900XT性能接近2200欧元的RTX 5090),AMD方案成为经济实用的选择。测试显示,不同规模模型的推理速度从9到74 tokens/秒不等,满足交互需求。随着ROCm不断完善,AMD生态将推动AI硬件多元化发展,为个人与小型组织提供低成本、低依赖的AI实践路径。
143 1
在AMD GPU上部署AI大模型:从ROCm环境搭建到Ollama本地推理实战指南
|
8天前
|
人工智能 弹性计算 智能设计
🎨 三步打造AI创意工坊 | 通义万相图像生成服务极速部署指南
🚀 从零到大师 | 通义万相智能创作系统部署指南
|
21天前
|
机器学习/深度学习 人工智能 自然语言处理
Qwen3强势来袭:推理力爆表、语言超百种、智能体协作领先,引领AI开源大模型
Qwen3强势来袭:推理力爆表、语言超百种、智能体协作领先,引领AI开源大模型
Qwen3强势来袭:推理力爆表、语言超百种、智能体协作领先,引领AI开源大模型
|
10月前
|
存储 SQL 数据库
Python 金融编程第二版(GPT 重译)(四)(4)
Python 金融编程第二版(GPT 重译)(四)
100 3
|
10月前
|
存储 NoSQL 索引
Python 金融编程第二版(GPT 重译)(一)(4)
Python 金融编程第二版(GPT 重译)(一)
101 2