Matplotlib 教程 之 Matplotlib imshow() 方法 1

简介: 《Matplotlib imshow() 方法教程》:本文介绍 Matplotlib 库中的 imshow() 函数,该函数常用于绘制二维灰度或彩色图像,也可用于展示矩阵、热力图等。文中详细解释了其语法及参数,例如颜色映射(cmap)、归一化(norm)等,并通过实例演示了如何使用 imshow() 显示灰度图像。

Matplotlib 教程 之 Matplotlib imshow() 方法 1

Matplotlib imshow() 方法

imshow() 函数是 Matplotlib 库中的一个函数,用于显示图像。

imshow() 函数常用于绘制二维的灰度图像或彩色图像。

imshow() 函数可用于绘制矩阵、热力图、地图等。

imshow() 方法语法格式如下:

imshow(X, cmap=None, norm=None, aspect=None, interpolation=None, alpha=None, vmin=None, vmax=None, origin=None, extent=None, shape=None, filternorm=1, filterrad=4.0, imlim=None, resample=None, url=None, , data=None, *kwargs)

参数说明:

X:输入数据。可以是二维数组、三维数组、PIL图像对象、matplotlib路径对象等。
cmap:颜色映射。用于控制图像中不同数值所对应的颜色。可以选择内置的颜色映射,如gray、hot、jet等,也可以自定义颜色映射。
norm:用于控制数值的归一化方式。可以选择Normalize、LogNorm等归一化方法。
aspect:控制图像纵横比(aspect ratio)。可以设置为auto或一个数字。
interpolation:插值方法。用于控制图像的平滑程度和细节程度。可以选择nearest、bilinear、bicubic等插值方法。
alpha:图像透明度。取值范围为0~1。
origin:坐标轴原点的位置。可以设置为upper或lower。
extent:控制显示的数据范围。可以设置为[xmin, xmax, ymin, ymax]。
vmin、vmax:控制颜色映射的值域范围。
filternorm 和 filterrad:用于图像滤波的对象。可以设置为None、antigrain、freetype等。
imlim: 用于指定图像显示范围。
resample:用于指定图像重采样方式。
url:用于指定图像链接。

以下是一些 imshow() 函数的使用实例。

显示灰度图像

实例

import matplotlib.pyplot as plt
import numpy as np

生成一个二维随机数组

img = np.random.rand(10, 10)

绘制灰度图像

plt.imshow(img, cmap='gray')

显示图像

plt.show()

以上实例中我们生成了一个 10x10 的随机数组,并使用 imshow() 函数将其显示为一张灰度图像。

我们设置了 cmap 参数为 gray,这意味着将使用灰度颜色映射显示图像。

目录
相关文章
|
2月前
|
数据可视化 Python
Matplotlib 教程 之 Seaborn 教程 10
Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专注于统计图形的绘制。它提供了高级接口和美观的默认主题,简化了复杂图形的生成过程。Seaborn 支持多种图表类型,如散点图、折线图、柱状图、热图等,并特别强调视觉效果。例如,使用 `sns.violinplot()` 可以轻松绘制展示数据分布的小提琴图。
34 1
|
13天前
|
Python
Matplotlib imsave() 方法
Matplotlib imsave() 方法
21 7
|
13天前
|
存储 Python
Matplotlib imread() 方法
Matplotlib imread() 方法
32 6
|
19天前
|
定位技术 Python
Matplotlib imshow() 方法
Matplotlib imshow() 方法
54 10
|
26天前
|
机器学习/深度学习 计算机视觉 Python
Matplotlib 教程
Matplotlib 教程
19 1
|
2月前
|
数据可视化 数据挖掘 Python
Matplotlib 教程 之 Seaborn 教程 8
Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专注于统计图形的绘制。它提供了简洁的高级接口和美观的默认样式,支持多种图表类型,如散点图、折线图、柱状图、热图等,特别适合于数据分析和展示。例如,使用 `sns.boxplot()` 可以轻松绘制箱线图,展示数据的分布情况。
40 3
|
2月前
|
数据可视化 Python
Matplotlib 教程 之 Seaborn 教程 9
Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专注于统计图形的绘制。它提供了高级接口和美观的默认主题,简化了复杂图形的生成过程。本文介绍了 Seaborn 的主要功能和绘图函数,包括热图 `sns.heatmap()` 的使用方法和示例代码。
24 1
|
2月前
|
数据可视化 Python
Matplotlib 教程 之 Seaborn 教程 2
Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专注于统计图形的绘制,提供高级接口和美观的默认主题,支持散点图、折线图等多种图表类型,安装简便,可通过 `pip install seaborn` 完成。Seaborn 设计注重美观与易用性,内置多种主题如 darkgrid、whitegrid 等,便于用户快速生成高质量的统计图表。
24 3
|
2月前
|
Python
Matplotlib 教程 之 Matplotlib imread() 方法 4
Matplotlib 的 `imread()` 方法用于从文件中读取图像数据,返回一个包含图像信息的 numpy 数组。该方法支持灰度和彩色图像,可通过调整数组元素来修改图像颜色。示例中展示了如何将图像中的绿色和蓝色通道置零,从而显示红色图像。
20 1
|
2月前
|
Python
Matplotlib 教程 之 Matplotlib imsave() 方法 2
Matplotlib 教程 之 Matplotlib imsave() 方法 2
31 1