Matplotlib 教程 之 Matplotlib imsave() 方法 2

简介: Matplotlib 教程 之 Matplotlib imsave() 方法 2

Matplotlib 教程 之 Matplotlib imsave() 方法 2

Matplotlib imsave() 方法

imsave() 方法是 Matplotlib 库中用于将图像数据保存到磁盘上的函数。

通过 imsave() 方法我们可以轻松将生成的图像保存到我们指定的目录中。

imsave() 方法保存图片支持多种图像格式,例如 PNG、JPEG、BMP 等。

imsave() 方法的语法如下:

matplotlib.pyplot.imsave(fname, arr, **kwargs)

参数说明:

fname:保存图像的文件名,可以是相对路径或绝对路径。
arr:表示图像的NumPy数组。
kwargs:可选参数,用于指定保存的图像格式以及图像质量等参数。

以下实例演示了如何使用 imsave() 方法将一个灰度图像和一幅彩色图像保存到当前目录上:

实例

import matplotlib.pyplot as plt
import numpy as np

创建一幅灰度图像
img_gray = np.random.random((100, 100))

创建一幅彩色图像
img_color = np.zeros((100, 100, 3))
img_color[:, :, 0] = np.random.random((100, 100))
img_color[:, :, 1] = np.random.random((100, 100))
img_color[:, :, 2] = np.random.random((100, 100))

显示灰度图像
plt.imshow(img_gray, cmap='gray')

保存灰度图像到磁盘上
plt.imsave('test_gray.png', img_gray, cmap='gray')

显示彩色图像
plt.imshow(img_color)

保存彩色图像到磁盘上
plt.imsave('test_color.jpg', img_color)

以上实例中我们使用了 numpy.random 模块分别创建了一幅灰度图像和一幅彩色图像,然后分别使用 imshow() 方法显示这两幅图像。

接着,我们使用 imsave() 函数将这两幅图像分别保存到了当前目录上,文件名分别为 test_gray.png 和 test_color.jpg。

在保存灰度图像时,我们使用了 cmap 参数将其保存为灰度图像格式。

在保存彩色图像时,我们没有指定图像格式,Matplotlib 库默认将其保存为 JPEG 格式的文件。

目录
相关文章
|
2月前
|
数据可视化 Python
Matplotlib 教程 之 Seaborn 教程 10
Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专注于统计图形的绘制。它提供了高级接口和美观的默认主题,简化了复杂图形的生成过程。Seaborn 支持多种图表类型,如散点图、折线图、柱状图、热图等,并特别强调视觉效果。例如,使用 `sns.violinplot()` 可以轻松绘制展示数据分布的小提琴图。
32 1
|
2月前
|
数据可视化 数据挖掘 Python
Matplotlib 教程 之 Seaborn 教程 8
Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专注于统计图形的绘制。它提供了简洁的高级接口和美观的默认样式,支持多种图表类型,如散点图、折线图、柱状图、热图等,特别适合于数据分析和展示。例如,使用 `sns.boxplot()` 可以轻松绘制箱线图,展示数据的分布情况。
37 3
|
2月前
|
数据可视化 Python
Matplotlib 教程 之 Seaborn 教程 9
Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专注于统计图形的绘制。它提供了高级接口和美观的默认主题,简化了复杂图形的生成过程。本文介绍了 Seaborn 的主要功能和绘图函数,包括热图 `sns.heatmap()` 的使用方法和示例代码。
19 1
|
2月前
|
数据可视化 Python
Matplotlib 教程 之 Seaborn 教程 2
Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专注于统计图形的绘制,提供高级接口和美观的默认主题,支持散点图、折线图等多种图表类型,安装简便,可通过 `pip install seaborn` 完成。Seaborn 设计注重美观与易用性,内置多种主题如 darkgrid、whitegrid 等,便于用户快速生成高质量的统计图表。
19 3
|
2月前
|
Python
Matplotlib 教程 之 Matplotlib imread() 方法 4
Matplotlib 的 `imread()` 方法用于从文件中读取图像数据,返回一个包含图像信息的 numpy 数组。该方法支持灰度和彩色图像,可通过调整数组元素来修改图像颜色。示例中展示了如何将图像中的绿色和蓝色通道置零,从而显示红色图像。
18 1
|
2月前
|
数据可视化 DataX Python
Matplotlib 教程 之 Seaborn 教程 6
Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专注于绘制统计图形。它提供高级接口和美观的默认主题,简化了复杂图形的绘制过程。本文档介绍了 Seaborn 的主要绘图函数,如 `sns.lineplot()` 用于绘制变量变化趋势的折线图,并给出了示例代码。
30 0
|
2月前
|
数据可视化 Python
Matplotlib 教程 之 Seaborn 教程 4
Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专注于绘制统计图形。它提供了高级接口和美观的默认主题,简化了复杂图形的绘制过程。以下示例展示了如何使用 Seaborn 和 Matplotlib 绘制一个简单的柱状图,展示不同产品的销售情况。
14 0
|
2月前
|
Python
Matplotlib 教程 之 Matplotlib 中文显示 4
Matplotlib 中文显示教程,介绍如何通过设置字体参数或下载支持中文的字体库(如思源黑体)来实现在 Matplotlib 中正确显示中文。示例代码展示了如何使用思源黑体设置图表标题和轴标签的中文显示。
16 0
|
2月前
|
Python
Matplotlib 教程 之 Matplotlib 中文显示 3
Matplotlib 是一个强大的绘图库,但默认不支持中文显示。通过设置字体参数或下载支持中文的字体库,可以解决这一问题。例如,设置 `plt.rcParams['font.family']` 为 `'Heiti TC'`,即可在图表中正确显示中文标题和标签。
14 0
|
2月前
|
Linux iOS开发 MacOS
Matplotlib 教程 之 Matplotlib 中文显示 2
Matplotlib 中文显示教程,介绍如何通过设置 Matplotlib 字体参数或下载支持中文的字体库来实现中文显示。适用于 Windows、Linux 和 macOS 系统,确保图表中文本正确呈现。
22 0