Matplotlib 教程 之 Matplotlib imsave() 方法 2

简介: Matplotlib 教程 之 Matplotlib imsave() 方法 2

Matplotlib 教程 之 Matplotlib imsave() 方法 2

Matplotlib imsave() 方法

imsave() 方法是 Matplotlib 库中用于将图像数据保存到磁盘上的函数。

通过 imsave() 方法我们可以轻松将生成的图像保存到我们指定的目录中。

imsave() 方法保存图片支持多种图像格式,例如 PNG、JPEG、BMP 等。

imsave() 方法的语法如下:

matplotlib.pyplot.imsave(fname, arr, **kwargs)

参数说明:

fname:保存图像的文件名,可以是相对路径或绝对路径。
arr:表示图像的NumPy数组。
kwargs:可选参数,用于指定保存的图像格式以及图像质量等参数。

以下实例演示了如何使用 imsave() 方法将一个灰度图像和一幅彩色图像保存到当前目录上:

实例

import matplotlib.pyplot as plt
import numpy as np

创建一幅灰度图像
img_gray = np.random.random((100, 100))

创建一幅彩色图像
img_color = np.zeros((100, 100, 3))
img_color[:, :, 0] = np.random.random((100, 100))
img_color[:, :, 1] = np.random.random((100, 100))
img_color[:, :, 2] = np.random.random((100, 100))

显示灰度图像
plt.imshow(img_gray, cmap='gray')

保存灰度图像到磁盘上
plt.imsave('test_gray.png', img_gray, cmap='gray')

显示彩色图像
plt.imshow(img_color)

保存彩色图像到磁盘上
plt.imsave('test_color.jpg', img_color)

以上实例中我们使用了 numpy.random 模块分别创建了一幅灰度图像和一幅彩色图像,然后分别使用 imshow() 方法显示这两幅图像。

接着,我们使用 imsave() 函数将这两幅图像分别保存到了当前目录上,文件名分别为 test_gray.png 和 test_color.jpg。

在保存灰度图像时,我们使用了 cmap 参数将其保存为灰度图像格式。

在保存彩色图像时,我们没有指定图像格式,Matplotlib 库默认将其保存为 JPEG 格式的文件。

目录
相关文章
|
2月前
|
数据可视化 Python
Matplotlib 教程 之 Seaborn 教程 10
Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专注于统计图形的绘制。它提供了高级接口和美观的默认主题,简化了复杂图形的生成过程。Seaborn 支持多种图表类型,如散点图、折线图、柱状图、热图等,并特别强调视觉效果。例如,使用 `sns.violinplot()` 可以轻松绘制展示数据分布的小提琴图。
34 1
|
13天前
|
Python
Matplotlib imsave() 方法
Matplotlib imsave() 方法
21 7
|
13天前
|
存储 Python
Matplotlib imread() 方法
Matplotlib imread() 方法
32 6
|
19天前
|
定位技术 Python
Matplotlib imshow() 方法
Matplotlib imshow() 方法
54 10
|
26天前
|
机器学习/深度学习 计算机视觉 Python
Matplotlib 教程
Matplotlib 教程
19 1
|
2月前
|
数据可视化 数据挖掘 Python
Matplotlib 教程 之 Seaborn 教程 8
Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专注于统计图形的绘制。它提供了简洁的高级接口和美观的默认样式,支持多种图表类型,如散点图、折线图、柱状图、热图等,特别适合于数据分析和展示。例如,使用 `sns.boxplot()` 可以轻松绘制箱线图,展示数据的分布情况。
40 3
|
2月前
|
数据可视化 Python
Matplotlib 教程 之 Seaborn 教程 9
Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专注于统计图形的绘制。它提供了高级接口和美观的默认主题,简化了复杂图形的生成过程。本文介绍了 Seaborn 的主要功能和绘图函数,包括热图 `sns.heatmap()` 的使用方法和示例代码。
24 1
|
2月前
|
数据可视化 Python
Matplotlib 教程 之 Seaborn 教程 2
Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专注于统计图形的绘制,提供高级接口和美观的默认主题,支持散点图、折线图等多种图表类型,安装简便,可通过 `pip install seaborn` 完成。Seaborn 设计注重美观与易用性,内置多种主题如 darkgrid、whitegrid 等,便于用户快速生成高质量的统计图表。
24 3
|
2月前
|
数据可视化 DataX Python
Matplotlib 教程 之 Seaborn 教程 6
Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专注于绘制统计图形。它提供高级接口和美观的默认主题,简化了复杂图形的绘制过程。本文档介绍了 Seaborn 的主要绘图函数,如 `sns.lineplot()` 用于绘制变量变化趋势的折线图,并给出了示例代码。
39 0
|
2月前
|
数据可视化 Python
Matplotlib 教程 之 Seaborn 教程 4
Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专注于绘制统计图形。它提供了高级接口和美观的默认主题,简化了复杂图形的绘制过程。以下示例展示了如何使用 Seaborn 和 Matplotlib 绘制一个简单的柱状图,展示不同产品的销售情况。
16 0