LangChain-20 Document Loader 文件加载 加载MD DOCX EXCEL PPT PDF HTML JSON 等多种文件格式 后续可通过FAISS向量化 增强检索

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: LangChain-20 Document Loader 文件加载 加载MD DOCX EXCEL PPT PDF HTML JSON 等多种文件格式 后续可通过FAISS向量化 增强检索

背景描述

LangChain 提供了多种文档加载器,包括但不限于以下几种:


TextLoader:用于从各种来源加载文本数据。

CSVLoader:用于加载 CSV 文件并将其转换为 LangChain 可以处理的文档格式。

UnstructuredFileLoader:能够自动检测并处理不同格式的文件。

DirectoryLoader:用于加载指定文件夹中的文件。

UnstructuredHTMLLoader:用于从 HTML 文件中提取有意义的内容。

JSONLoader:用于加载和处理 JSON 文件。

PyPDFLoader:用于加载 PDF 文件。

ArxivLoader:专门用于加载来自 Arxiv 的文档。

安装依赖

pip install -qU langchain-core langchain-openai

加载Text

编写代码

from langchain_community.document_loaders import TextLoader

loader = TextLoader("./index.md")
data = loader.load()
print(data)

运行结果

➜ python3 test20.py
[Document(page_content='# hello world!\nthis is a markdown!\n', metadata={'source': '

加载CSV

编写代码

from langchain_community.document_loaders.csv_loader import CSVLoader


loader = CSVLoader(file_path='./example_data/mlb_teams_2012.csv')
data = loader.load()
print(data)

运行结果

loader = CSVLoader(file_path='./example_data/mlb_teams_2012.csv', csv_args={
    'delimiter': ',',
    'quotechar': '"',
    'fieldnames': ['MLB Team', 'Payroll in millions', 'Wins']
})

data = loader.load()
print(data)

加载目录

编写代码

from langchain_community.document_loaders import DirectoryLoader

loader = DirectoryLoader('../', glob="**/*.md")
docs = loader.load()
print(docs)

# 显示一个 进度条
loader = DirectoryLoader('../', glob="**/*.md", show_progress=True)

# 多线程加载
loader = DirectoryLoader('../', glob="**/*.md", use_multithreading=True)

# 自动检测编码
text_loader_kwargs={'autodetect_encoding': True}
loader = DirectoryLoader(path, glob="**/*.txt", loader_cls=TextLoader, loader_kwargs=text_loader_kwargs)

加载HTML

编写代码

from langchain_community.document_loaders import UnstructuredHTMLLoader
from langchain_community.document_loaders import BSHTMLLoader

loader = UnstructuredHTMLLoader("example_data/fake-content.html")
data = loader.load()
print(data)

# 如果你会用 BeautifulSoup4 的话,可以用它解析
loader = BSHTMLLoader("example_data/fake-content.html")
data = loader.load()
print(data)

加载JSON

编写代码

from langchain_community.document_loaders import JSONLoader

import json
from pathlib import Path
from pprint import pprint

# 普通的加载 json.loads
file_path='./example_data/facebook_chat.json'
data = json.loads(Path(file_path).read_text())
pprint(data)

# 使用 JSONLoader
loader = JSONLoader(
    file_path='./example_data/facebook_chat.json',
    jq_schema='.messages[].content',
    text_content=False)

data = loader.load()
pprint(data)

加载JSON LINES

编写代码

from langchain_community.document_loaders import JSONLoader

import json
from pathlib import Path
from pprint import pprint

file_path = './example_data/facebook_chat_messages.jsonl'
pprint(Path(file_path).read_text())

loader = JSONLoader(
    file_path='./example_data/facebook_chat_messages.jsonl',
    jq_schema='.content',
    text_content=False,
    json_lines=True)

data = loader.load()
pprint(data)

加载Markdown

编写代码

from langchain_community.document_loaders import UnstructuredMarkdownLoader

markdown_path = "../../../../../README.md"
loader = UnstructuredMarkdownLoader(markdown_path)
data = loader.load()

加载PDF

安装依赖

pip install pypdf
pip install rapidocr-onnxruntime

编写代码

from langchain_community.document_loaders import PyPDFLoader

# 加载方式很多,不止这一个PDF的Loader
loader = PyPDFLoader("example_data/layout-parser-paper.pdf")
pages = loader.load_and_split()
print(pages[0])

# 可以将图片转化为文字
loader = PyPDFLoader("https://arxiv.org/pdf/2103.15348.pdf", extract_images=True)
pages = loader.load()
pages[4].page_content

向量化数据(简单例子 详细可看该系列的其他文章)

编写代码

from langchain_community.vectorstores import FAISS
from langchain_openai import OpenAIEmbeddings

faiss_index = FAISS.from_documents(pages, OpenAIEmbeddings())
docs = faiss_index.similarity_search("How will the community be engaged?", k=2)
for doc in docs:
    print(str(doc.metadata["page"]) + ":", doc.page_content[:300])


相关实践学习
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
目录
相关文章
|
6月前
|
前端开发 JavaScript
个人征信电子版无痕修改, 个人信用报告pdf修改,js+html+css即可实现【仅供学习用途】
本代码展示了一个信用知识学习系统的前端实现,包含评分计算、因素分析和建议生成功能。所有数据均为模拟生成
|
JSON 算法 vr&ar
目标检测笔记(五):查看通过COCOEvaluator生成的coco_instances_results.json文件的详细检测信息,包含AP、AR、MR和DR等
本文介绍了如何使用COCO评估器通过Detectron2库对目标检测模型进行性能评估,生成coco_instances_results.json文件,并利用pycocotools解析该文件以计算AP、AR、MR和DR等关键指标。
988 1
目标检测笔记(五):查看通过COCOEvaluator生成的coco_instances_results.json文件的详细检测信息,包含AP、AR、MR和DR等
|
8月前
|
XML JSON API
如何在 Postman 中上传文件和 JSON 数据
如果你想在 Postman 中同时上传文件和 JSON 数据,本文将带你一步一步地了解整个过程,包括最佳实践和技巧,让你的工作更轻松。
|
6月前
|
前端开发
个人征信PDF无痕修改软件,个人征信模板可编辑,个人征信报告p图神器【js+html+css仅供学习用途】
这是一款信用知识学习系统,旨在帮助用户了解征信基本概念、信用评分计算原理及信用行为影响。系统通过模拟数据生成信用报告,涵盖还款记录
|
10月前
|
开发工具 git 索引
怎么取消对project.private.config.json这个文件的git记录
通过以上步骤,您可以成功取消对 `project.private.config.json`文件的Git记录。这样,文件将不会被包含在未来的提交中,同时仍保留在您的工作区中。
267 28
|
Java BI API
spring boot 整合 itextpdf 导出 PDF,写入大文本,写入HTML代码,分析当下导出PDF的几个工具
这篇文章介绍了如何在Spring Boot项目中整合iTextPDF库来导出PDF文件,包括写入大文本和HTML代码,并分析了几种常用的Java PDF导出工具。
3166 0
spring boot 整合 itextpdf 导出 PDF,写入大文本,写入HTML代码,分析当下导出PDF的几个工具
|
存储 搜索推荐 数据库
运用LangChain赋能企业规章制度制定:深入解析Retrieval-Augmented Generation(RAG)技术如何革新内部管理文件起草流程,实现高效合规与个性化定制的完美结合——实战指南与代码示例全面呈现
【10月更文挑战第3天】构建公司规章制度时,需融合业务实际与管理理论,制定合规且促发展的规则体系。尤其在数字化转型背景下,利用LangChain框架中的RAG技术,可提升规章制定效率与质量。通过Chroma向量数据库存储规章制度文本,并使用OpenAI Embeddings处理文本向量化,将现有文档转换后插入数据库。基于此,构建RAG生成器,根据输入问题检索信息并生成规章制度草案,加快更新速度并确保内容准确,灵活应对法律与业务变化,提高管理效率。此方法结合了先进的人工智能技术,展现了未来规章制度制定的新方向。
537 3
|
JSON 数据格式 Python
Python实用记录(十四):python统计某个单词在TXT/JSON文件中出现的次数
这篇文章介绍了一个Python脚本,用于统计TXT或JSON文件中特定单词的出现次数。它包含两个函数,分别处理文本和JSON文件,并通过命令行参数接收文件路径、目标单词和文件格式。文章还提供了代码逻辑的解释和示例用法。
334 0
Python实用记录(十四):python统计某个单词在TXT/JSON文件中出现的次数
|
JavaScript 前端开发 容器
Vue生成PDF文件攻略:html2canvas与jspdf联手,中文乱码与自动换行难题攻克
Vue生成PDF文件攻略:html2canvas与jspdf联手,中文乱码与自动换行难题攻克
1687 0
|
JSON 数据格式 计算机视觉
Opencv实用笔记(一): 获取并绘制JSON标注文件目标区域(可单独保存目标小图)
本文介绍了如何使用OpenCV和Python根据JSON标注文件获取并绘制目标区域,同时可将裁剪的图像单独保存。通过示例代码,展示了如何读取图片路径、解析JSON标注、绘制标注框并保存裁剪图像的过程。此外,还提供了相关的博客链接,供读者进一步学习。
390 0

热门文章

最新文章