LangChain-24 Agengts 通过TavilySearch Agent实现检索内容并回答 AgentExecutor转换Search 借助Prompt Tools工具

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: LangChain-24 Agengts 通过TavilySearch Agent实现检索内容并回答 AgentExecutor转换Search 借助Prompt Tools工具

安装依赖

pip install -qU langchain-core langchain-openai
• 1

Prompt

# 从Hub加载Prompt,自己写加载进来也一样
# SYSTEM
#
# You are a helpful assistant
#
# PLACEHOLDER
#
# chat_history
# HUMAN
#
# {input}
#
# PLACEHOLDER
#

编写代码

from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WebBaseLoader
from langchain_community.vectorstores import FAISS
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain.tools.retriever import create_retriever_tool
from langchain_openai import ChatOpenAI
from langchain.agents import create_openai_functions_agent
from langchain.agents import AgentExecutor
from langchain import hub


# 这里需要配置KEY 免费
search = TavilySearchResults()
# message1 = search.invoke("what is the weather in SF")
# print(f"message1: {message1}")

loader = WebBaseLoader("https://docs.smith.langchain.com/overview")
docs = loader.load()
documents = RecursiveCharacterTextSplitter(
    chunk_size=1000, chunk_overlap=200
).split_documents(docs)
vector = FAISS.from_documents(documents, OpenAIEmbeddings())
retriever = vector.as_retriever()
result1 = retriever.get_relevant_documents("how to upload a dataset")[0]
print(f"result1: {result1}")

# 转换为工具
retriever_tool = create_retriever_tool(
    retriever,
    "langsmith_search",
    "Search for information about LangSmith. For any questions about LangSmith, you must use this tool!",
)

# 定义工具
tools = [search, retriever_tool]
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)

# 从Hub加载Prompt,自己写加载进来也一样
# SYSTEM
#
# You are a helpful assistant
#
# PLACEHOLDER
#
# chat_history
# HUMAN
#
# {input}
#
# PLACEHOLDER
#
# agent_scratchpad
prompt = hub.pull("hwchase17/openai-functions-agent")
print(f"prompt message: {prompt.messages}")

# 新建Agent
agent = create_openai_functions_agent(llm, tools, prompt)
# Agent执行器
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)

# 尝试执行
message2 = agent_executor.invoke({"input": "hi!"})
print(f"message2: {message2}")

# 执行任务
message3 = agent_executor.invoke({"input": "how can langsmith help with testing?"})
print(f"message3: {message3}")


运行结果

➜ python3 test24.py
result1: page_content="about LangSmith:User Guide: Learn about the workflows LangSmith supports at each stage of the LLM application lifecycle.Setup: Learn how to create an account, obtain an API key, and configure your environment.Pricing: Learn about the pricing model for LangSmith.Self-Hosting: Learn about self-hosting options for LangSmith.Proxy: Learn about the proxy capabilities of LangSmith.Tracing: Learn about the tracing capabilities of LangSmith.Evaluation: Learn about the evaluation capabilities of LangSmith.Prompt Hub Learn about the Prompt Hub, a prompt management tool built into LangSmith.Additional Resources\u200bLangSmith Cookbook: A collection of tutorials and end-to-end walkthroughs using LangSmith.LangChain Python: Docs for the Python LangChain library.LangChain Python API Reference: documentation to review the core APIs of LangChain.LangChain JS: Docs for the TypeScript LangChain libraryDiscord: Join us on our Discord to discuss all things LangChain!Contact SalesIf you're interested in" metadata={'source': 'https://docs.smith.langchain.com/overview', 'title': 'LangSmith | 🦜️🛠️ LangSmith', 'description': 'Introduction', 'language': 'en'}
prompt message: [SystemMessagePromptTemplate(prompt=PromptTemplate(input_variables=[], template='You are a helpful assistant')), MessagesPlaceholder(variable_name='chat_history', optional=True), HumanMessagePromptTemplate(prompt=PromptTemplate(input_variables=['input'], template='{input}')), MessagesPlaceholder(variable_name='agent_scratchpad')]


> Entering new AgentExecutor chain...
Hello! How can I assist you today?

> Finished chain.
message2: {'input': 'hi!', 'output': 'Hello! How can I assist you today?'}


> Entering new AgentExecutor chain...
LangSmith is a search engine that can help you find information about testing. You can use it to search for best practices, testing frameworks, testing tools, and other resources related to testing. Additionally, LangSmith can help you find answers to specific questions you may have about testing. For example, you can search for information on how to write effective test cases, how to automate testing, or how to perform load testing. By using LangSmith, you can save time and effort in your testing efforts by quickly finding the information you need.

> Finished chain.
message3: {'input': 'how can langsmith help with testing?', 'output': 'LangSmith is a search engine that can help you find information about testing. You can use it to search for best practices, testing frameworks, testing tools, and other resources related to testing. Additionally, LangSmith can help you find answers to specific questions you may have about testing. For example, you can search for information on how to write effective test cases, how to automate testing, or how to perform load testing. By using LangSmith, you can save time and effort in your testing efforts by quickly finding the information you need.'}


相关实践学习
阿里云百炼xAnalyticDB PostgreSQL构建AIGC应用
通过该实验体验在阿里云百炼中构建企业专属知识库构建及应用全流程。同时体验使用ADB-PG向量检索引擎提供专属安全存储,保障企业数据隐私安全。
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
目录
相关文章
|
2月前
LangChain-26 Custom Agent 自定义一个Agent并通过@tool绑定对应的工具 同时让大模型自己调用编写的@tools函数
LangChain-26 Custom Agent 自定义一个Agent并通过@tool绑定对应的工具 同时让大模型自己调用编写的@tools函数
77 3
LangChain-26 Custom Agent 自定义一个Agent并通过@tool绑定对应的工具 同时让大模型自己调用编写的@tools函数
|
2月前
|
搜索推荐 API
LangChain-16 Using Tools LangChain封装好的工具集tools
LangChain-16 Using Tools LangChain封装好的工具集tools
40 5
|
2月前
|
JSON 数据格式
LangChain-20 Document Loader 文件加载 加载MD DOCX EXCEL PPT PDF HTML JSON 等多种文件格式 后续可通过FAISS向量化 增强检索
LangChain-20 Document Loader 文件加载 加载MD DOCX EXCEL PPT PDF HTML JSON 等多种文件格式 后续可通过FAISS向量化 增强检索
93 2
|
2月前
LangChain-15 Manage Prompt Size 管理上下文大小,用Agent的方式询问问题,并去百科检索内容,总结后返回
LangChain-15 Manage Prompt Size 管理上下文大小,用Agent的方式询问问题,并去百科检索内容,总结后返回
39 2
|
2月前
|
机器学习/深度学习 存储 自然语言处理
LangChain-22 Text Embedding 续接21节 文本切分后 对文本进行embedding向量化处理 后续可保存到向量数据库后进行检索 从而扩展大模型的能力
LangChain-22 Text Embedding 续接21节 文本切分后 对文本进行embedding向量化处理 后续可保存到向量数据库后进行检索 从而扩展大模型的能力
49 0
|
2月前
|
机器学习/深度学习 JSON JavaScript
LangChain-21 Text Splitters 内容切分器 支持多种格式 HTML JSON md Code(JS/Py/TS/etc) 进行切分并输出 方便将数据进行结构化后检索
LangChain-21 Text Splitters 内容切分器 支持多种格式 HTML JSON md Code(JS/Py/TS/etc) 进行切分并输出 方便将数据进行结构化后检索
34 0
|
4月前
|
存储 人工智能
|
20天前
|
存储 人工智能 自然语言处理
AI经营|多Agent择优生成商品标题
商品标题中关键词的好坏是商品能否被主搜检索到的关键因素,使用大模型自动优化标题成为【AI经营】中的核心能力之一,本文讲述大模型如何帮助商家优化商品素材,提升商品竞争力。
AI经营|多Agent择优生成商品标题
|
22天前
|
人工智能 算法 搜索推荐
清华校友用AI破解162个高数定理,智能体LeanAgent攻克困扰陶哲轩难题!
清华校友开发的LeanAgent智能体在数学推理领域取得重大突破,成功证明了162个未被人类证明的高等数学定理,涵盖抽象代数、代数拓扑等领域。LeanAgent采用“持续学习”框架,通过课程学习、动态数据库和渐进式训练,显著提升了数学定理证明的能力,为数学研究和教育提供了新的思路和方法。
40 3
|
23天前
|
人工智能 自然语言处理 算法
企业内训|AI/大模型/智能体的测评/评估技术-某电信运营商互联网研发中心
本课程是TsingtaoAI专为某电信运营商的互联网研发中心的AI算法工程师设计,已于近日在广州对客户团队完成交付。课程聚焦AI算法工程师在AI、大模型和智能体的测评/评估技术中的关键能力建设,深入探讨如何基于当前先进的AI、大模型与智能体技术,构建符合实际场景需求的科学测评体系。课程内容涵盖大模型及智能体的基础理论、测评集构建、评分标准、自动化与人工测评方法,以及特定垂直场景下的测评实战等方面。
79 4