LangChain-24 Agengts 通过TavilySearch Agent实现检索内容并回答 AgentExecutor转换Search 借助Prompt Tools工具

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: LangChain-24 Agengts 通过TavilySearch Agent实现检索内容并回答 AgentExecutor转换Search 借助Prompt Tools工具

安装依赖

pip install -qU langchain-core langchain-openai
• 1

Prompt

# 从Hub加载Prompt,自己写加载进来也一样
# SYSTEM
#
# You are a helpful assistant
#
# PLACEHOLDER
#
# chat_history
# HUMAN
#
# {input}
#
# PLACEHOLDER
#

编写代码

from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WebBaseLoader
from langchain_community.vectorstores import FAISS
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain.tools.retriever import create_retriever_tool
from langchain_openai import ChatOpenAI
from langchain.agents import create_openai_functions_agent
from langchain.agents import AgentExecutor
from langchain import hub


# 这里需要配置KEY 免费
search = TavilySearchResults()
# message1 = search.invoke("what is the weather in SF")
# print(f"message1: {message1}")

loader = WebBaseLoader("https://docs.smith.langchain.com/overview")
docs = loader.load()
documents = RecursiveCharacterTextSplitter(
    chunk_size=1000, chunk_overlap=200
).split_documents(docs)
vector = FAISS.from_documents(documents, OpenAIEmbeddings())
retriever = vector.as_retriever()
result1 = retriever.get_relevant_documents("how to upload a dataset")[0]
print(f"result1: {result1}")

# 转换为工具
retriever_tool = create_retriever_tool(
    retriever,
    "langsmith_search",
    "Search for information about LangSmith. For any questions about LangSmith, you must use this tool!",
)

# 定义工具
tools = [search, retriever_tool]
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)

# 从Hub加载Prompt,自己写加载进来也一样
# SYSTEM
#
# You are a helpful assistant
#
# PLACEHOLDER
#
# chat_history
# HUMAN
#
# {input}
#
# PLACEHOLDER
#
# agent_scratchpad
prompt = hub.pull("hwchase17/openai-functions-agent")
print(f"prompt message: {prompt.messages}")

# 新建Agent
agent = create_openai_functions_agent(llm, tools, prompt)
# Agent执行器
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)

# 尝试执行
message2 = agent_executor.invoke({"input": "hi!"})
print(f"message2: {message2}")

# 执行任务
message3 = agent_executor.invoke({"input": "how can langsmith help with testing?"})
print(f"message3: {message3}")


运行结果

➜ python3 test24.py
result1: page_content="about LangSmith:User Guide: Learn about the workflows LangSmith supports at each stage of the LLM application lifecycle.Setup: Learn how to create an account, obtain an API key, and configure your environment.Pricing: Learn about the pricing model for LangSmith.Self-Hosting: Learn about self-hosting options for LangSmith.Proxy: Learn about the proxy capabilities of LangSmith.Tracing: Learn about the tracing capabilities of LangSmith.Evaluation: Learn about the evaluation capabilities of LangSmith.Prompt Hub Learn about the Prompt Hub, a prompt management tool built into LangSmith.Additional Resources\u200bLangSmith Cookbook: A collection of tutorials and end-to-end walkthroughs using LangSmith.LangChain Python: Docs for the Python LangChain library.LangChain Python API Reference: documentation to review the core APIs of LangChain.LangChain JS: Docs for the TypeScript LangChain libraryDiscord: Join us on our Discord to discuss all things LangChain!Contact SalesIf you're interested in" metadata={'source': 'https://docs.smith.langchain.com/overview', 'title': 'LangSmith | 🦜️🛠️ LangSmith', 'description': 'Introduction', 'language': 'en'}
prompt message: [SystemMessagePromptTemplate(prompt=PromptTemplate(input_variables=[], template='You are a helpful assistant')), MessagesPlaceholder(variable_name='chat_history', optional=True), HumanMessagePromptTemplate(prompt=PromptTemplate(input_variables=['input'], template='{input}')), MessagesPlaceholder(variable_name='agent_scratchpad')]


> Entering new AgentExecutor chain...
Hello! How can I assist you today?

> Finished chain.
message2: {'input': 'hi!', 'output': 'Hello! How can I assist you today?'}


> Entering new AgentExecutor chain...
LangSmith is a search engine that can help you find information about testing. You can use it to search for best practices, testing frameworks, testing tools, and other resources related to testing. Additionally, LangSmith can help you find answers to specific questions you may have about testing. For example, you can search for information on how to write effective test cases, how to automate testing, or how to perform load testing. By using LangSmith, you can save time and effort in your testing efforts by quickly finding the information you need.

> Finished chain.
message3: {'input': 'how can langsmith help with testing?', 'output': 'LangSmith is a search engine that can help you find information about testing. You can use it to search for best practices, testing frameworks, testing tools, and other resources related to testing. Additionally, LangSmith can help you find answers to specific questions you may have about testing. For example, you can search for information on how to write effective test cases, how to automate testing, or how to perform load testing. By using LangSmith, you can save time and effort in your testing efforts by quickly finding the information you need.'}


相关实践学习
阿里云百炼xAnalyticDB PostgreSQL构建AIGC应用
通过该实验体验在阿里云百炼中构建企业专属知识库构建及应用全流程。同时体验使用ADB-PG向量检索引擎提供专属安全存储,保障企业数据隐私安全。
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
目录
相关文章
|
2月前
LangChain-26 Custom Agent 自定义一个Agent并通过@tool绑定对应的工具 同时让大模型自己调用编写的@tools函数
LangChain-26 Custom Agent 自定义一个Agent并通过@tool绑定对应的工具 同时让大模型自己调用编写的@tools函数
88 3
LangChain-26 Custom Agent 自定义一个Agent并通过@tool绑定对应的工具 同时让大模型自己调用编写的@tools函数
|
2月前
|
JSON 数据格式
LangChain-20 Document Loader 文件加载 加载MD DOCX EXCEL PPT PDF HTML JSON 等多种文件格式 后续可通过FAISS向量化 增强检索
LangChain-20 Document Loader 文件加载 加载MD DOCX EXCEL PPT PDF HTML JSON 等多种文件格式 后续可通过FAISS向量化 增强检索
114 2
|
2月前
LangChain-15 Manage Prompt Size 管理上下文大小,用Agent的方式询问问题,并去百科检索内容,总结后返回
LangChain-15 Manage Prompt Size 管理上下文大小,用Agent的方式询问问题,并去百科检索内容,总结后返回
39 2
|
2月前
|
机器学习/深度学习 存储 自然语言处理
LangChain-22 Text Embedding 续接21节 文本切分后 对文本进行embedding向量化处理 后续可保存到向量数据库后进行检索 从而扩展大模型的能力
LangChain-22 Text Embedding 续接21节 文本切分后 对文本进行embedding向量化处理 后续可保存到向量数据库后进行检索 从而扩展大模型的能力
51 0
|
2月前
|
机器学习/深度学习 JSON JavaScript
LangChain-21 Text Splitters 内容切分器 支持多种格式 HTML JSON md Code(JS/Py/TS/etc) 进行切分并输出 方便将数据进行结构化后检索
LangChain-21 Text Splitters 内容切分器 支持多种格式 HTML JSON md Code(JS/Py/TS/etc) 进行切分并输出 方便将数据进行结构化后检索
36 0
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
Gemini 2.0:谷歌推出的原生多模态输入输出 + Agent 为核心的 AI 模型
谷歌最新推出的Gemini 2.0是一款原生多模态输入输出的AI模型,以Agent技术为核心,支持多种数据类型的输入与输出,具备强大的性能和多语言音频输出能力。本文将详细介绍Gemini 2.0的主要功能、技术原理及其在多个领域的应用场景。
83 20
Gemini 2.0:谷歌推出的原生多模态输入输出 + Agent 为核心的 AI 模型
|
5天前
|
人工智能 API 语音技术
TEN Agent:开源的实时多模态 AI 代理框架,支持语音、文本和图像的实时通信交互
TEN Agent 是一个开源的实时多模态 AI 代理框架,集成了 OpenAI Realtime API 和 RTC 技术,支持语音、文本和图像的多模态交互,具备实时通信、模块化设计和多语言支持等功能,适用于智能客服、实时语音助手等多种场景。
69 15
TEN Agent:开源的实时多模态 AI 代理框架,支持语音、文本和图像的实时通信交互
|
6天前
|
人工智能 自然语言处理 前端开发
Director:构建视频智能体的 AI 框架,用自然语言执行搜索、编辑、合成和生成等复杂视频任务
Director 是一个构建视频智能体的 AI 框架,用户可以通过自然语言命令执行复杂的视频任务,如搜索、编辑、合成和生成视频内容。该框架基于 VideoDB 的“视频即数据”基础设施,集成了多个预构建的视频代理和 AI API,支持高度定制化,适用于开发者和创作者。
59 9
Director:构建视频智能体的 AI 框架,用自然语言执行搜索、编辑、合成和生成等复杂视频任务
|
3天前
|
机器学习/深度学习 人工智能 算法
Meta Motivo:Meta 推出能够控制数字智能体动作的 AI 模型,提升元宇宙互动体验的真实性
Meta Motivo 是 Meta 公司推出的 AI 模型,旨在控制数字智能体的全身动作,提升元宇宙体验的真实性。该模型通过无监督强化学习算法,能够实现零样本学习、行为模仿与生成、多任务泛化等功能,适用于机器人控制、虚拟助手、游戏角色动画等多个应用场景。
23 4
Meta Motivo:Meta 推出能够控制数字智能体动作的 AI 模型,提升元宇宙互动体验的真实性
|
14天前
|
人工智能 自然语言处理 JavaScript
Agent-E:基于 AutoGen 代理框架构建的 AI 浏览器自动化系统
Agent-E 是一个基于 AutoGen 代理框架构建的智能自动化系统,专注于浏览器内的自动化操作。它能够执行多种复杂任务,如填写表单、搜索和排序电商产品、定位网页内容等,从而提高在线效率,减少重复劳动。本文将详细介绍 Agent-E 的功能、技术原理以及如何运行该系统。
59 5
Agent-E:基于 AutoGen 代理框架构建的 AI 浏览器自动化系统