保护敏感数据:使用Python加密数据的实用方法

本文涉及的产品
密钥管理服务KMS,1000个密钥,100个凭据,1个月
简介: 保护敏感数据是一项基本的安全实践,Python通过上述库提供了强大的加密工具来实现这一目标。选择哪种方法取决于具体的应用场景和安全需求:对称加密(如AES)适合快速处理大量数据,而非对称加密(如RSA)更适合安全地交换密钥或进行身份验证。哈希函数则用于验证数据的完整性和一致性。通过合理使用这些技术,开发者可以大大增强其应用程序的安全性。

在处理敏感数据时,确保信息安全至关重要。Python作为一种广泛应用的编程语言,提供了多种库来实现数据加密,帮助开发者保护数据免受未经授权的访问。以下是几种实用的Python加密数据方法,适用于不同场景的需求。

1. 使用 cryptography库进行高级加密

cryptography是一个功能丰富的库,提供了多种加密算法,包括对称加密、非对称加密、哈希函数以及消息认证码等。它是Python中最常用的加密库之一,因其安全性高和易于使用而受到推崇。

对称加密示例(AES)

from cryptography.fernet import Fernet

# 生成密钥
key = Fernet.generate_key()

# 初始化Fernet对象
cipher_suite = Fernet(key)

# 待加密的信息
data = b"This is sensitive data."

# 加密数据
encrypted_data = cipher_suite.encrypt(data)

# 解密数据
decrypted_data = cipher_suite.decrypt(encrypted_data)

print(decrypted_data.decode())
​

非对称加密示例(RSA)

from cryptography.hazmat.primitives.asymmetric import rsa, padding
from cryptography.hazmat.primitives import serialization, hashes

# 生成RSA密钥对
private_key = rsa.generate_private_key(
    public_exponent=65537,
    key_size=2048,
)
public_key = private_key.public_key()

# 加密信息
message = b"A secret message"
encrypted = public_key.encrypt(
    message,
    padding.OAEP(
        mgf=padding.MGF1(algorithm=hashes.SHA256()),
        algorithm=hashes.SHA256(),
        label=None
    )
)

# 解密信息
decrypted = private_key.decrypt(
    encrypted,
    padding.OAEP(
        mgf=padding.MGF1(algorithm=hashes.SHA256()),
        algorithm=hashes.SHA256(),
        label=None
    )
)

print(decrypted.decode())
​

2. 应用 hashlib进行数据完整性验证

虽然 hashlib主要用于数据摘要而非加密,但它在验证数据完整性方面非常有用。通过对数据进行哈希运算,可以确保数据未被篡改。

import hashlib

# 待验证的原始数据
data = "Some important data."

# 使用SHA-256算法计算哈希值
hash_object = hashlib.sha256(data.encode())
hex_dig = hash_object.hexdigest()

print("Hash of the data:", hex_dig)

# 在另一处验证哈希值
other_data = "Some important data."
other_hash_object = hashlib.sha256(other_data.encode())
other_hex_dig = other_hash_object.hexdigest()

if hex_dig == other_hex_dig:
    print("Data has not been altered.")
else:
    print("Data has been tampered with.")
​

3. 使用 PyCryptodome库进行更广泛的加密操作

PyCryptodomePyCrypto的一个分支,提供了更多的加密算法和功能,是另一个强大的加密库选择。它支持更多加密协议,如AES、RSA、ECDSA等,且兼容Python 3。

AES加密示例

from Crypto.Cipher import AES
from Crypto.Random import get_random_bytes

# 生成随机密钥
key = get_random_bytes(32)

# 初始化加密器
cipher = AES.new(key, AES.MODE_EAX)

# 待加密的消息
plaintext = b"The secret message."

# 加密数据
ciphertext, tag = cipher.encrypt_and_digest(plaintext)

# 解密数据
decrypt_cipher = AES.new(key, AES.MODE_EAX, nonce=cipher.nonce)
decrypted_text = decrypt_cipher.decrypt_and_verify(ciphertext, tag)

print(decrypted_text.decode())
​

总结

保护敏感数据是一项基本的安全实践,Python通过上述库提供了强大的加密工具来实现这一目标。选择哪种方法取决于具体的应用场景和安全需求:对称加密(如AES)适合快速处理大量数据,而非对称加密(如RSA)更适合安全地交换密钥或进行身份验证。哈希函数则用于验证数据的完整性和一致性。通过合理使用这些技术,开发者可以大大增强其应用程序的安全性。

目录
相关文章
|
1月前
|
测试技术 API Python
【10月更文挑战第1天】python知识点100篇系列(13)-几种方法让你的电脑一直在工作
【10月更文挑战第1天】 本文介绍了如何通过Python自动操作鼠标或键盘使电脑保持活跃状态,避免自动息屏。提供了三种方法:1) 使用PyAutoGUI,通过安装pip工具并执行`pip install pyautogui`安装,利用`moveRel()`方法定时移动鼠标;2) 使用Pymouse,通过`pip install pyuserinput`安装,采用`move()`方法移动鼠标绝对位置;3) 使用PyKeyboard,同样需安装pyuserinput,模拟键盘操作。文中推荐使用PyAutoGUI,因其功能丰富且文档详尽。
WK
|
19天前
|
Python
Python中format_map()方法
在Python中,`format_map()`方法用于使用字典格式化字符串。它接受一个字典作为参数,用字典中的键值对替换字符串中的占位符。此方法适用于从字典动态获取值的场景,尤其在处理大量替换值时更为清晰和方便。
WK
67 36
|
24天前
|
数据采集 JSON 数据处理
抓取和分析JSON数据:使用Python构建数据处理管道
在大数据时代,电商网站如亚马逊、京东等成为数据采集的重要来源。本文介绍如何使用Python结合代理IP、多线程等技术,高效、隐秘地抓取并处理电商网站的JSON数据。通过爬虫代理服务,模拟真实用户行为,提升抓取效率和稳定性。示例代码展示了如何抓取亚马逊商品信息并进行解析。
抓取和分析JSON数据:使用Python构建数据处理管道
|
29天前
|
安全 Linux 数据安全/隐私保护
python知识点100篇系列(15)-加密python源代码为pyd文件
【10月更文挑战第5天】为了保护Python源码不被查看,可将其编译成二进制文件(Windows下为.pyd,Linux下为.so)。以Python3.8为例,通过Cython工具,先写好Python代码并加入`# cython: language_level=3`指令,安装easycython库后,使用`easycython *.py`命令编译源文件,最终生成.pyd文件供直接导入使用。
python知识点100篇系列(15)-加密python源代码为pyd文件
|
30天前
|
机器学习/深度学习 数据采集 数据挖掘
11种经典时间序列预测方法:理论、Python实现与应用
本文将总结11种经典的时间序列预测方法,并提供它们在Python中的实现示例。
63 2
11种经典时间序列预测方法:理论、Python实现与应用
|
9天前
|
图形学 Python
SciPy 空间数据2
凸包(Convex Hull)是计算几何中的概念,指包含给定点集的所有凸集的交集。可以通过 `ConvexHull()` 方法创建凸包。示例代码展示了如何使用 `scipy` 库和 `matplotlib` 绘制给定点集的凸包。
18 1
|
10天前
|
JSON 数据格式 索引
Python中序列化/反序列化JSON格式的数据
【11月更文挑战第4天】本文介绍了 Python 中使用 `json` 模块进行序列化和反序列化的操作。序列化是指将 Python 对象(如字典、列表)转换为 JSON 字符串,主要使用 `json.dumps` 方法。示例包括基本的字典和列表序列化,以及自定义类的序列化。反序列化则是将 JSON 字符串转换回 Python 对象,使用 `json.loads` 方法。文中还提供了具体的代码示例,展示了如何处理不同类型的 Python 对象。
|
10天前
|
数据采集 Web App开发 iOS开发
如何使用 Python 语言的正则表达式进行网页数据的爬取?
使用 Python 进行网页数据爬取的步骤包括:1. 安装必要库(requests、re、bs4);2. 发送 HTTP 请求获取网页内容;3. 使用正则表达式提取数据;4. 数据清洗和处理;5. 循环遍历多个页面。通过这些步骤,可以高效地从网页中提取所需信息。
|
12天前
|
数据库 数据安全/隐私保护 Windows
Windows远程桌面出现CredSSP加密数据修正问题解决方案
【10月更文挑战第30天】本文介绍了两种解决Windows系统凭据分配问题的方法。方案一是通过组策略编辑器(gpedit.msc)启用“加密数据库修正”并将其保护级别设为“易受攻击”。方案二是通过注册表编辑器(regedit)在指定路径下创建或修改名为“AllowEncryptionOracle”的DWORD值,并将其数值设为2。
35 3
|
1月前
|
数据处理 Python
Python实用记录(十):获取excel数据并通过列表的形式保存为txt文档、xlsx文档、csv文档
这篇文章介绍了如何使用Python读取Excel文件中的数据,处理后将其保存为txt、xlsx和csv格式的文件。
45 3
Python实用记录(十):获取excel数据并通过列表的形式保存为txt文档、xlsx文档、csv文档