【C语言】深度解析:动态内存管理的机制与实践

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
简介: 【C语言】深度解析:动态内存管理的机制与实践

【前文】

目前我们掌握申请内存的方式有两种:
int a=0;//直接开辟空间
int arr[10]={0};//连续开辟空间

上面两种开辟空间的方式存在一些问题:

  • 栈空间开辟的空间大小是固定的
  • 数组在声明时,必须指定数组的长度(一定确定大小不能被调整)

以上不能够灵活地处理内存问题,有时候是需要的空间大小在程序运行时才能知道,那么数组在编译时开辟空间的方式就不能得到满足。

对此,为了更灵活地使用空间,C语言标准库提供了程序员在堆上申请和释放空间的函数


【正文】

C语言标准库提供申请和释放动态内存空间的库函数,声明在stdlib.h头文件中。

提前说明:使用同类型指针进行接收的原因是为了确保程序能够正确地解释和操作分配的内存。如果类型不匹配,可能会导致数据处理错误、内存泄漏,甚至程序崩溃。

一、动态内存开辟函数

温馨提示】:

以下三种动态内存开辟函数,都有可能会出现开辟失败的情况,对此返回值为空,通过判断指针是否为空,做出及时的处理。在OJ需要开辟空间时,一般不需要判断,一般不会开辟失败。

1.1 malloc

#include <stdio.h>
#include <stdlib.h>
int main()
{
    int *p=(int *)malloc(10*sizeof(int))
        if(p==NULL)
        {
            perror("malloc fail!!!")
                return 1;
        }
    free(p)
        p=NULL;
    return 0;
}

说明】:

  • 向内存申请空间不完成初始化,返回指向这块空间的大小
  • malloc是void*类型,当我们申请空间时候,需要知道申请空间交给什么类型去维护
  • 如果参数size为0,malloc可能会报错(取决于编译器)
  • 同时申请空间有时候不一定会成功。如果失败的话,将会返回一个空指针,比如申请的空间太大,就会申请失败,这一点使用的时候要去注意。

1.2 calloc

#include <stdio.h>
#include <stdlib.h>
int main()
{
    int *p=(int *)calloc(10,sizeof(int))
        if(p==NULL)
        {
            perror("calloc fail!!!")
                return 1;
        }
    free(p)
        p=NULL;
    return 0;
}

说明】:

  • 向内存申请空间完成初始化为0,并且返回指向这块空间的指针
  • 因为calloc是void*类型,当我们申请空间时候,需要知道申请空间交给什么类型去维护
  • 同时申请空间有时候不一定会成功。如果失败的话,将会返回一个空指针,比如申请的空间太大,就会申请失败,这一点使用的时候要去注意。

1.3 malloc和calloc区别

  • 都是向堆上申请空间
  • 参数部分不同
  • malloc申请空间没有初始化,calloc申请空间初始化为0

1.4 realloc(动态内存扩容)

int main()
{
    int *p=(int *)malloc(10*sizeof(int));
    if(p=NULL)
    {
        perror("malloc fail!!!");
        return 0;
    }
    int *pe=(int *)realloc(p,20*sizeof(int));
    if(pe=NULL)
    {
        perror("realloc fail!!!");
        return 0;
    }
    p=pe;
    free(p)
        p=NULL;
    pe=NULL;
    return 0;
}

说明】:

  • 申请扩展空间并返回指向扩展空间的地址
  • 一般realloc函数的使用,是在开辟好空间的基础上进行进一步的扩容
  • 如果第一个参数部分为空指针,那么realloc等价于malloc。同时需要注意是否开辟空间成功

问题】:realloc需要扩容大小,是在malloc开辟空间大小的基础上追加,还是直接申请整个空间的大小

回答】:直接申请整个空间的大小


1.4.1 关于realloc扩展空间的两种情况:

情况一】:当内存空间足够的时候,直接在申请好的空间追加

情况二】;当内存空间不够的时候,会在内存中寻找一块更大的空间存放,将目前的数据拷贝一份到新的空间位置中,再将原来的空间释放掉.


二、free(释放动态开辟内存)

说明】:

  • 释放动态内存空间
  • 使用方法在上面都有体现
  • free参数部分是空指针,则函数什么事都不做
  • free非动态内存就会报错重复,行为是未定义的
  • 重复释放同一块动态内存空间,会报错

注意】:如果忘记去free指针指向空间,操作系统会自动的回收使用权,但是尽量能写就写,万一出现内存泄漏危险了。


三、动态内存的常见错误

  • 对空指针的解引用操作
  • 对动态开辟的空间越界访问
  • 对非动态开辟的空间使用free释放
  • 对free释放一块动态开辟空间的一部分(空间只能一整块还)
  • 多次对一块动态内存空间使用free释放
  • 动态开辟内存忘记释放(内存泄漏)

四、柔性数组(flexible array)

在C99中,结构体最后一个成员为未知大小的数组,这个被称为柔性数组的成员,帮助用户根据要求自己给大小,更加轻松地处理可变长度的数据结构。

typedef struct st_type
{
    int i;
    int nums[0];
}type_a;
有些编译器可能会编译失败,可以化成nums[]
    typedef struct st_type
    {
        int i;
        int nums[];
    }type_a; 

4.1 柔性数组的特点

  • 结构体中至少有一个成员在柔性数组前面(如果顺序错了,也会报错)
  • sizeof返回的这种结构大小是不包含柔性数组的内存,编译器在计算结构体大小时会忽略柔性数组成员
  • 对包含柔性数组的结构体,申请空间的时候适度大于结构体的大小,以便于适应柔性数组的大小
typedef struct st_type
{
    int i;
    int a[0];//柔性数组成员
}type_a;
int main()
{
    printf("%d\n", sizeof(type_a));//输出的是4
    return 0;
}

4.2 柔性数组的使用

代码一】:

typedef struct st_type
{
    int i;
    int *p_a;
}type_a;
int main() 
{
    int i = 0;
    type_a *p = (type_a*)malloc(sizeof(type_a)+100*sizeof(int));
    p->i = 100;
    for(i=0; i<100; i++)
    {
        p->a[i] = i;
    }
    free(p);
    return 0;
}

代码二】:

typedef struct st_type
{
    int i;
    int *p_a;
}type_a;
int main()
{
    type_a *p = (type_a *)malloc(sizeof(type_a));
    p->i = 100;
    p->p_a = (int *)malloc(p->i*sizeof(int));
    //业务处理
    for(i=0; i<100; i++)
    {
        p->p_a[i] = i;
    }
    //释放空间
    free(p->p_a);
    p->p_a = NULL;
    free(p);
    p= NULL;
    return 0;
}

说明】:

  • 就是在一块空间内再开辟一块空间使用。
  • 第一种和第二种都能实现相同的效果,但是第一种有两个好处

【第一个好处】:

  • 如果里面做了二次内存分配,并把整个结构体返回给用户。当用户需要释放空间时候,并不知道这个结构体内成员也需要free。
  • 如果结构体的内存以及其成员要的内存一次性分配好,返回一个结构体指针,用户只需要一次free就可以把所有的内存也给释放掉了

【第二个好处】:连续的内存有益于提高访问速度,也有益于减少内存碎片


五、C/C++中程序内存区域规划

内存分配的几个区域:

栈区(stack):

  • 在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存储单元自动被释放。
  • 栈内存分配运算内置于处理器的指令集中,效率很高,但是分的内存容量有限
  • 栈区主要存放运行函数而分配的局部变量、函数参数、返回数据、返回地址等

堆区(heap)

一般由程序员分配释放,若程序员不释放,程序结束时可能由OS(操作系统)回收。

数据段(静态区):(static)存放全局变量、静态数据。程序结束后由系统释放。

代码段:存放函数体(类成员函数和全局函数)的二进制代码



相关文章
|
3天前
|
机器学习/深度学习 人工智能 算法
模型无关的局部解释(LIME)技术原理解析及多领域应用实践
在当前数据驱动的商业环境中,人工智能(AI)和机器学习(ML)已成为各行业决策的关键工具,但随之而来的是“黑盒”问题:模型内部机制难以理解,引发信任缺失、监管合规难题及伦理考量。LIME(局部可解释模型无关解释)应运而生,通过解析复杂模型的个别预测,提供清晰、可解释的结果。LIME由华盛顿大学的研究者于2016年提出,旨在解决AI模型的透明度问题。它具有模型无关性、直观解释和局部保真度等优点,在金融、医疗等领域广泛应用。LIME不仅帮助企业提升决策透明度,还促进了模型优化和监管合规,是实现可解释AI的重要工具。
35 9
|
1天前
|
存储 编译器 C语言
C++类与对象深度解析(一):从抽象到实践的全面入门指南
C++类与对象深度解析(一):从抽象到实践的全面入门指南
15 8
|
1天前
|
设计模式 算法 PHP
PHP中的设计模式:策略模式的深入解析与实践
策略模式是一种行为型设计模式,用于定义一系列算法,将每种算法都封装起来,并使它们可以互换。本文将探讨如何在PHP中实现策略模式,以及如何利用它来提高代码的灵活性和可维护性。通过具体示例,我们将看到策略模式在处理复杂业务逻辑时的优势,从而帮助开发者编写出更加清晰、易于扩展的代码。
|
1天前
|
C++
【C++】深入解析C/C++内存管理:new与delete的使用及原理(二)
【C++】深入解析C/C++内存管理:new与delete的使用及原理
|
1天前
|
编译器 C++ 开发者
【C++】深入解析C/C++内存管理:new与delete的使用及原理(三)
【C++】深入解析C/C++内存管理:new与delete的使用及原理
|
1天前
|
存储 C语言 C++
【C++】深入解析C/C++内存管理:new与delete的使用及原理(一)
【C++】深入解析C/C++内存管理:new与delete的使用及原理
|
1天前
|
存储 编译器 C语言
【C语言篇】数组和函数的实践:扫雷游戏(附源码)
【C语言篇】数组和函数的实践:扫雷游戏(附源码)
7 0
|
1天前
|
编译器 C语言 C++
【C语言】精妙运用内存函数:深入底层逻辑的探索
【C语言】精妙运用内存函数:深入底层逻辑的探索
|
1天前
|
Serverless 编译器 C语言
【C语言】指针篇- 深度解析Sizeof和Strlen:热门面试题探究(5/5)
【C语言】指针篇- 深度解析Sizeof和Strlen:热门面试题探究(5/5)
|
C语言
《C语言及程序设计》实践参考——双分支结构流程图-大值
返回:贺老师课程教学链接  项目要求 【双分支结构流程图-大值】问题:画流程图,输入两个整数a和b,输出其中的大值。提示:采用双分支结构,输入a、b后,将大值赋值给另外一个变量,最后输出结果。 参考解答:
1527 0

推荐镜像

更多