python3多线程实战(python3经典编程案例)

简介: 该文章提供了Python3中多线程的应用实例,展示了如何利用Python的threading模块来创建和管理线程,以实现并发执行任务。

总结:

  • python多线程适用在I/O密集型的任务中。对于I/O密集型任务来说,较少的时间用在cpu计算上,较多的时间用在I/O上,如文件读写,web请求,数据库请求等;
  • 对于计算密集型任务,应该使用多进程。

一. 多线程任务对比

线程也是轻量级进程,是操作系统能够进行运算调度的最小单位。它被包含在进程中,是进程的实际运作单位

一个线程可以创建和撤销另一个线程,同一进程的多个线程之间可以并发执行。

线程有就绪,阻塞,运行3中基本状态。

计算密集型任务-多进程

from multiprocessing import Process
import os, time

#计算密集型任务
def work():
    res = 0
    for i in range(100000000):
        res *= i

if __name__ == "__main__":
    l = []
    print("本机为",os.cpu_count(),"核 CPU")  # 本机为4核
    start = time.time()
    for i in range(4):
        p = Process(target=work)  # 多进程
        l.append(p)
        p.start()
    for p in l:
        p.join()
    stop = time.time()
    print("计算密集型任务,多进程耗时 %s" % (stop - start))

计算密集型任务-多线程

from threading import Thread
import os, time

#计算密集型任务
def work():
    res = 0
    for i in range(100000000):
        res *= i

if __name__ == "__main__":
    l = []
    print("本机为",os.cpu_count(),"核 CPU")  # 本机为4核
    start = time.time()
    for i in range(4):
        p = Thread(target=work)  # 多进程
        l.append(p)
        p.start()
    for p in l:
        p.join()
    stop = time.time()
    print("计算密集型任务,多线程耗时 %s" % (stop - start))

I/O密集型任务-多进程

from multiprocessing import Process
import os, time

#I/0密集型任务
def work():
    time.sleep(2)
    print("===>", file=open("tmp.txt", "w"))

if __name__ == "__main__":
    l = []
    print("本机为", os.cpu_count(), "核 CPU")  # 本机为4核
    start = time.time()
    for i in range(400):
        p = Process(target=work)  # 多进程
        l.append(p)
        p.start()
    for p in l:
        p.join()
    stop = time.time()
    print("I/0密集型任务,多进程耗时 %s" % (stop - start))

I/O密集型任务-多线程

from threading import Thread
import os, time

#I/0密集型任务
def work():
    time.sleep(2)
    print("===>", file=open("tmp.txt", "w"))


if __name__ == "__main__":
    l = []
    print("本机为", os.cpu_count(), "核 CPU")  # 本机为4核
    start = time.time()

    for i in range(400):
        p = Thread(target=work)  # 多线程
        l.append(p)
        p.start()
    for p in l:
        p.join()
    stop = time.time()
    print("I/0密集型任务,多线程耗时 %s" % (stop - start))

结论:在python中,对于计算密集型任务,多进程占优势;对于IO密集型任务,多线程占优势。

二. threading模块

2.1 通过实例化threading.Thread类来创建线程

调用start()方法。

import time
import threading


def task_thread(counter):
    print(
        f'线程名称:{threading.current_thread().name} 参数:{counter} 开始时间:{time.strftime("%Y-%m-%d %H:%M:%S")}'
    )
    num = counter
    while num:
        time.sleep(3)
        num -= 1
    print(
        f'线程名称:{threading.current_thread().name} 参数:{counter} 结束时间:{time.strftime("%Y-%m-%d %H:%M:%S")}'
    )


if __name__ == "__main__":
    print(f'主线程开始时间:{time.strftime("%Y-%m-%d %H:%M:%S")}')

    # 初始化3个线程,传递不同的参数
    t1 = threading.Thread(target=task_thread, args=(3,))
    t2 = threading.Thread(target=task_thread, args=(2,))
    t3 = threading.Thread(target=task_thread, args=(1,))
    # 开启三个线程
    t1.start()
    t2.start()
    t3.start()
    # 等待运行结束
    t1.join()
    t2.join()
    t3.join()

    print(f'主线程结束时间:{time.strftime("%Y-%m-%d %H:%M:%S")}')

2.2 继承Thread类创建线程

在子类中重写run()init()方法

import time
import threading


class MyThread(threading.Thread):
    def __init__(self, counter):
        super().__init__()
        self.counter = counter


    def run(self):

        print(
            f'线程名称:{threading.current_thread().name} 参数:{self.counter} 开始时间:{time.strftime("%Y-%m-%d %H:%M:%S")}'
        )
        counter = self.counter
        while counter:
            time.sleep(3)
            counter -= 1
        print(
            f'线程名称:{threading.current_thread().name} 参数:{self.counter} 结束时间:{time.strftime("%Y-%m-%d %H:%M:%S")}'
        )


if __name__ == "__main__":
    print(f'主线程开始时间:{time.strftime("%Y-%m-%d %H:%M:%S")}')

    # 初始化3个线程,传递不同的参数
    t1 = MyThread(3)
    t2 = MyThread(2)
    t3 = MyThread(1)
    # 开启三个线程
    t1.start()
    t2.start()
    t3.start()
    # 等待运行结束
    t1.join()
    t2.join()
    t3.join()

    print(f'主线程结束时间:{time.strftime("%Y-%m-%d %H:%M:%S")}')

2.3 继承Thread类调用外部传入参数

import time
import threading


def task_thread(counter):
    print(f'线程名称:{threading.current_thread().name} 参数:{counter} 开始时间:{time.strftime("%Y-%m-%d %H:%M:%S")}')
    num = counter
    while num:
        time.sleep(3)
        num -= 1
    print(f'线程名称:{threading.current_thread().name} 参数:{counter} 结束时间:{time.strftime("%Y-%m-%d %H:%M:%S")}')


class MyThread(threading.Thread):
    def __init__(self, target, args):
        super().__init__()
        self.target = target
        self.args = args

    def run(self):
        self.target(*self.args)


if __name__ == "__main__":
    print(f'主线程开始时间:{time.strftime("%Y-%m-%d %H:%M:%S")}')

    # 初始化3个线程,传递不同的参数
    t1 = MyThread(target=task_thread,args=(3,))
    t2 = MyThread(target=task_thread,args=(2,))
    t3 = MyThread(target=task_thread,args=(1,))
    # 开启三个线程
    t1.start()
    t2.start()
    t3.start()
    # 等待运行结束
    t1.join()
    t2.join()
    t3.join()

    print(f'主线程结束时间:{time.strftime("%Y-%m-%d %H:%M:%S")}')

三. 多线程同步之lock(互斥锁)

不加锁的意外情况:
3个线程对共同mun进行100万次加减操作之后,num的结果不为零

#!/usr/local/bin/python3
#-*- coding: utf-8 -*-
import time, threading

num = 0

def task_thread(n):
   global num
   for i in range(1000000):
       num = num + n
       num = num - n

t1 = threading.Thread(target=task_thread, args=(6,))
t2 = threading.Thread(target=task_thread, args=(17,))
t3 = threading.Thread(target=task_thread, args=(11,))
t1.start()
t2.start()
t3.start()
t1.join()
t2.join()
t3.join()
print(num)

加互斥锁之后的运行结果始终一致

import time, threading

num = 0
lock = threading.Lock()
def task_thread(n):
    global num
    # 获取锁,用于线程同步
    lock.acquire()
    for i in range(1000000):
        num = num + n
        num = num - n
    #释放锁,开启下一个线程
    lock.release()

t1 = threading.Thread(target=task_thread, args=(6,))
t2 = threading.Thread(target=task_thread, args=(17,))
t3 = threading.Thread(target=task_thread, args=(11,))
t1.start()
t2.start()
t3.start()
t1.join()
t2.join()
t3.join()
print(num)

四. 多线程同步之Semaphore(信号量)

互斥锁只允许一个线程访问共享数据,而信号量同时允许一定数量的线程访问共享数据。

比如柜台有5个窗口,允许同时有5个人办理业务,后面的人只能等待,5人中有人办理完业务,等待的人才能去办理。
使用信号量控制多线程并发数,代码如下:

import threading
import time

# 同时只有5个人办理业务
semaphore = threading.BoundedSemaphore(5)


# 模拟银行业务办理
def yewubanli(name):
    semaphore.acquire()
    time.sleep(3)
    print(f"{time.strftime('%Y-%m-%d %H:%M:%S')} {name} 正在办理业务")

    semaphore.release()


thread_list = []
for i in range(12):
    t = threading.Thread(target=yewubanli, args=(i,))
    thread_list.append(t)

for thread in thread_list:
    thread.start()

for thread in thread_list:
    thread.join()

# while threading.active_count() != 1:
#    time.sleep(1)

可以看出,同一时刻只有5个人正在办理业务,即同一时刻只有5个线程获得资源运行。

五. 多线程同步之Condition

条件对象能让一个线程A停下来,等待其他线程B,线程B满足某个条件后通知线程B继续运行

import threading


class Boy(threading.Thread):
    def __init__(self, cond, name):
        super(Boy, self).__init__()
        self.cond = cond
        self.name = name

    def run(self):
        self.cond.acquire()
        print(self.name + ": 嫁给我吧!?")
        self.cond.notify()  # 唤醒一个挂起的线程,让hanmeimei表态
        self.cond.wait()  # 释放内部所占用的琐,同时线程被挂起,直至接收到通知被唤醒或超时,等待hanmeimei回答
        print(self.name + ": 我单下跪,送上戒指!")
        self.cond.notify()
        self.cond.wait()
        print(self.name + ": Li太太,你的选择太明智了。")
        self.cond.release()


class Girl(threading.Thread):
    def __init__(self, cond, name):
        super(Girl, self).__init__()
        self.cond = cond
        self.name = name

    def run(self):
        self.cond.acquire()
        self.cond.wait()  # 等待Lilei求婚
        print(self.name + ": 没有情调,不够浪漫,不答应")
        self.cond.notify()
        self.cond.wait()
        print(self.name + ": 好吧,答应你了")
        self.cond.notify()
        self.cond.release()


cond = threading.Condition()
boy = Boy(cond, "LiLei")
girl = Girl(cond, "HanMeiMei")
girl.start()
boy.start()

上面程序先启动了girl线程,gitl虽然获取到了条件变量锁cond, 但又执行了wait并释放条件变量锁,自身进入阻塞状态。
boy线程启动后,就获得了条件变量锁cond并发出了消息,之后通过notify唤醒一个挂起的线程。
最后通过release程序释放资源。

六. 多线程同步之Event

事件用于线程之间的通信。一个线程发出一个信号,其他一个或者多个线程等待,调用Event对象的wait方法,线程则会阻塞等待,直到别的线程set之后才会被唤醒。

import threading, time


class Boy(threading.Thread):
    def __init__(self, cond, name):
        super(Boy, self).__init__()
        self.cond = cond
        self.name = name

    def run(self):
        print(self.name + ": 嫁给我吧!?")
        self.cond.set()  # 唤醒一个挂起的线程,让hanmeimei表态
        time.sleep(0.5)
        self.cond.wait()
        print(self.name + ": 我单下跪,送上戒指!")
        self.cond.set()
        time.sleep(0.5)
        self.cond.wait()
        self.cond.clear()
        print(self.name + ": Li太太,你的选择太明智了。")


class Girl(threading.Thread):
    def __init__(self, cond, name):
        super(Girl, self).__init__()
        self.cond = cond
        self.name = name

    def run(self):
        self.cond.wait()  # 等待Lilei求婚
        self.cond.clear()
        print(self.name + ": 没有情调,不够浪漫,不答应")
        self.cond.set()
        time.sleep(0.5)
        self.cond.wait()
        print(self.name + ": 好吧,答应你了")
        self.cond.set()


cond = threading.Event()
boy = Boy(cond, "LiLei")
girl = Girl(cond, "HanMeiMei")
boy.start()
girl.start()

Event内部默认内置了一个标志,初始值为false。上面代码girl通过wait()方法进入等待状态,直到boy调用该Event的set()方法将内置标志设置为true,对象girl再继续运行。

对象boy最后调用Event的clear方法再讲内置的标志设置为False,恢复初始状态。

七. 线程优先队列

python的queue模块提供了同步的,线程安全的队列类。包括

  • 先进先出的队列queue;
  • 后进先出的LifoQueue;
  • 优先级队列PriorityQueue

这些队列都实现了锁原语,可以直接使用来实现线程的同步。

比如,有一个小冰箱用来存放冷饮,假如只能放5瓶冷饮,A不停的放,B不停的取,A和B的放取速度不一致,就可以用队列来做。

import threading, time

import queue

# 先进先出
q = queue.Queue(maxsize=5)


# q = queue.LifoQueue(maxsize=3)
# q = queue.PriorityQueue(maxsize=3)

def ProducerA():
    count = 1
    while True:
        q.put(f"冷饮 {count}")
        print(f"{time.strftime('%H:%M:%S')} A 放入:[冷饮 {count}]")
        count += 1
        time.sleep(1)
        print(f'放入后队列长度:{q.qsize()}')


def ConsumerB():
    while True:
        print(f"{time.strftime('%H:%M:%S')} B 取出 [{q.get()}]")
        print('--', q.qsize())
        print(f'取出后队列长度:{q.qsize()}')
        time.sleep(5)


p = threading.Thread(target=ProducerA)
c = threading.Thread(target=ConsumerB)
c.start()
p.start()

上面的代码就是实现生产者和消费者模型的一个比较简单的例子。

在并发编程中,使用生产者和消费之模式可以解决绝大多数的并发问题

如果生产者处理的速度很快,而消费者处理速度很慢,那么生产者就必须等消费者处理完,才能继续生产数据。
同理,如果消费者的处理能力大于生产者,那消费者就必须等待生产者。

生产者和消费者模式就是通过一个容器(队列)来解决强耦合问题,生产者和消费者之间不通信,阻塞队列就相当于一个缓冲区,平衡了生产者和消费者的处理能力。

八. 多线程之线程池 pool

单线程和线程池并发执行效率对比:

from multiprocessing.dummy import Pool as ThreadPool
import time


def fun(n):
    time.sleep(2)


start = time.time()
for i in range(5):
    fun(i)
print("单线程顺序执行耗时:", time.time() - start)

start2 = time.time()
# 开8个 worker,没有参数时默认是 cpu 的核心数
pool = ThreadPool(processes=5)
# 在线程中执行 urllib2.urlopen(url) 并返回执行结果
results2 = pool.map(fun, range(5))
pool.close()
pool.join()
print("线程池(5)并发执行耗时:", time.time() - start2)
相关文章
|
2月前
|
Java
如何在Java中进行多线程编程
Java多线程编程常用方式包括:继承Thread类、实现Runnable接口、Callable接口(可返回结果)及使用线程池。推荐线程池以提升性能,避免频繁创建线程。结合同步与通信机制,可有效管理并发任务。
161 6
|
5月前
|
人工智能 安全 调度
Python并发编程之线程同步详解
并发编程在Python中至关重要,线程同步确保多线程程序正确运行。本文详解线程同步机制,包括互斥锁、信号量、事件、条件变量和队列,探讨全局解释器锁(GIL)的影响及解决线程同步问题的最佳实践,如避免全局变量、使用线程安全数据结构、精细化锁的使用等。通过示例代码帮助开发者理解并提升多线程程序的性能与可靠性。
198 0
|
2月前
|
数据采集 监控 数据库
Python异步编程实战:爬虫案例
🌟 蒋星熠Jaxonic,代码为舟的星际旅人。从回调地狱到async/await协程天堂,亲历Python异步编程演进。分享高性能爬虫、数据库异步操作、限流监控等实战经验,助你驾驭并发,在二进制星河中谱写极客诗篇。
Python异步编程实战:爬虫案例
|
2月前
|
Java 调度 数据库
Python threading模块:多线程编程的实战指南
本文深入讲解Python多线程编程,涵盖threading模块的核心用法:线程创建、生命周期、同步机制(锁、信号量、条件变量)、线程通信(队列)、守护线程与线程池应用。结合实战案例,如多线程下载器,帮助开发者提升程序并发性能,适用于I/O密集型任务处理。
289 0
|
3月前
|
算法 Java
Java多线程编程:实现线程间数据共享机制
以上就是Java中几种主要处理多线程序列化资源以及协调各自独立运行但需相互配合以完成任务threads 的技术手段与策略。正确应用上述技术将大大增强你程序稳定性与效率同时也降低bug出现率因此深刻理解每项技术背后理论至关重要.
262 16
|
4月前
|
数据采集 消息中间件 并行计算
Python多线程与多进程性能对比:从原理到实战的深度解析
在Python编程中,多线程与多进程是提升并发性能的关键手段。本文通过实验数据、代码示例和通俗比喻,深入解析两者在不同任务类型下的性能表现,帮助开发者科学选择并发策略,优化程序效率。
303 1
|
3月前
|
设计模式 缓存 运维
Python装饰器实战场景解析:从原理到应用的10个经典案例
Python装饰器是函数式编程的精华,通过10个实战场景,从日志记录、权限验证到插件系统,全面解析其应用。掌握装饰器,让代码更优雅、灵活,提升开发效率。
262 0
|
5月前
|
数据采集 监控 调度
干货分享“用 多线程 爬取数据”:单线程 + 协程的效率反超 3 倍,这才是 Python 异步的正确打开方式
在 Python 爬虫中,多线程因 GIL 和切换开销效率低下,而协程通过用户态调度实现高并发,大幅提升爬取效率。本文详解协程原理、实战对比多线程性能,并提供最佳实践,助你掌握异步爬虫核心技术。
|
5月前
|
数据采集 存储 NoSQL
Python爬虫案例:Scrapy+XPath解析当当网网页结构
Python爬虫案例:Scrapy+XPath解析当当网网页结构
|
5月前
|
数据采集 存储 Java
多线程Python爬虫:加速大规模学术文献采集
多线程Python爬虫:加速大规模学术文献采集

热门文章

最新文章

推荐镜像

更多