深度学习之探索神经网络、感知器与损失函数

简介: 在当今的数字化时代,深度学习作为一种强大的机器学习技术,正在迅速改变着我们的生活方式。无论是智能推荐系统、自动驾驶车辆还是语音识别应用,深度学习都在背后默默地发挥作用。

在当今的数字化时代,深度学习作为一种强大的机器学习技术,正在迅速改变着我们的生活方式。无论是智能推荐系统、自动驾驶车辆还是语音识别应用,深度学习都在背后默默地发挥作用。本文旨在为初学者提供一份深入浅出的指南,帮助理解神经网络的基础构造、感知器的工作机制以及损失函数在训练过程中的关键作用。

一、神经网络的基本构造

神经网络是一种模拟人脑神经元结构的计算模型,它由多个层级组成,每个层级包含多个神经元。神经网络的主要组成部分包括输入层、隐藏层和输出层。

输入层

功能: 输入层是神经网络的入口,它接收原始数据,例如图像、音频信号或文本等。

特点: 输入层并不执行任何计算,只是简单地将数据传递给下一个层级。

神经元数量: 神经元的数量与输入数据的特征维度相匹配。例如,对于一张28x28像素的灰度图像,输入层将有784个神经元。

隐藏层

功能: 隐藏层负责从输入数据中提取抽象特征,并将这些特征传递给输出层。隐藏层可以是单层或多层,层数越多,网络能够捕捉的特征就越复杂。

特点: 隐藏层中的每个神经元都会对其输入进行加权求和,并通过一个激活函数来产生输出。激活函数(如ReLU、sigmoid或tanh)为网络带来了非线性能力,使其能够拟合更复杂的函数。

权重与偏置: 每个连接都有一个权重值,用于调整输入信号的强度;每个神经元还有一个偏置项,用以调整激活阈值。

输出层

功能: 输出层负责生成最终的预测结果。根据任务的不同,输出层可能包含一个或多个神经元,并使用特定的激活函数(如softmax或线性激活)。

特点: 对于分类任务,输出层通常采用softmax函数,将输出转化为概率分布;而对于回归任务,则可能使用线性激活函数。

前向传播

过程: 数据从前向后逐层传递,每次传递过程中都会进行加权求和与激活操作,最终生成预测结果。

反向传播

过程: 反向传播是一种优化算法,用于更新网络中的权重和偏置。它通过计算输出层的损失函数,并将误差梯度从前向后传递,以调整网络参数,从而降低预测误差。

二、感知器:神经网络的基石

感知器是最简单的神经网络模型之一,它由一个或几个输入单元、一个输出单元以及一个激活函数组成。

基本结构

输入: 感知器接收一组输入信号,每个信号与一个权重相对应。

加权求和: 输入信号与其权重相乘后求和。

激活: 加权和加上偏置后通过激活函数产生输出。早期的感知器通常使用阶跃函数作为激活函数,但现代网络更倾向于使用如ReLU或sigmoid等更灵活的激活函数。

工作原理

加权求和: 每个输入信号乘以其权重后相加。

添加偏置: 在加权求和的基础上加上一个固定的偏置值。

激活函数: 最终的加权和通过激活函数产生输出。

三、损失函数:模型优化的灵魂

损失函数是深度学习模型训练的核心组件之一,它衡量模型预测值与实际值之间的差距。

定义

概念: 损失函数是一个数学表达式,用于量化模型预测结果与真实标签之间的差异。

作用: 提供优化方向、评估模型性能以及指导参数更新。

常见损失函数

回归任务: 常见的损失函数包括均方误差(MSE)、平均绝对误差(MAE)和Smooth L1 Loss等。

MSE: 适用于回归问题,计算预测值与实际值之间差值的平方的平均数。

MAE: 对异常值具有更好的鲁棒性,但优化时可能会遇到梯度消失问题。

Smooth L1 Loss: 结合了MSE和MAE的优点,适用于存在异常值的情况。

分类任务: 常用的损失函数有交叉熵损失(Cross-Entropy Loss)等。

Cross-Entropy Loss: 适用于多分类问题,通过比较预测概率分布与真实标签的差异来计算损失。

相关文章
|
27天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
89 4
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
2月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
313 55
|
18天前
|
机器学习/深度学习 监控 算法
基于yolov4深度学习网络的排队人数统计系统matlab仿真,带GUI界面
本项目基于YOLOv4深度学习网络,利用MATLAB 2022a实现排队人数统计的算法仿真。通过先进的计算机视觉技术,系统能自动、准确地检测和统计监控画面中的人数,适用于银行、车站等场景,优化资源分配和服务管理。核心程序包含多个回调函数,用于处理用户输入及界面交互,确保系统的高效运行。仿真结果无水印,操作步骤详见配套视频。
44 18
|
2月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
205 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面
本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。
73 31
|
2月前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
|
2月前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
99 3