基于 Hologres 搭建轻量 OLAP 分析平台评测报告

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
云原生数据仓库AnalyticDB MySQL版,基础版 8ACU 100GB 1个月
简介: 【9月更文第6天】开作为互联网手游公司的产品经理和项目经理,数据分析对于我们的业务至关重要。我们一直在寻找高效、可靠的数据分析解决方案,以更好地了解玩家行为、优化游戏体验和提升运营效率。近期,我们体验并部署了《基于 Hologres 搭建轻量 OLAP 分析平台》解决方案,以下是我们对该方案的评测报告。

一、引言

作为互联网手游公司的产品经理和项目经理,数据分析对于我们的业务至关重要。我们一直在寻找高效、可靠的数据分析解决方案,以更好地了解玩家行为、优化游戏体验和提升运营效率。近期,我们体验并部署了《基于 Hologres 搭建轻量 OLAP 分析平台》解决方案,以下是我们对该方案的评测报告。
5555.png

二、方案内容技术细节评估

  1. 方案内容提供了较为丰富的技术细节,从 Hologres 的架构原理、数据存储方式、查询处理机制等方面进行了深入阐述。这使得我们能够较好地理解方案的深层原理。
  2. 在实施方法上,文档详细介绍了如何进行数据导入、创建数据表、设计查询语句以及配置可视化工具等步骤。通过这些指导,我们能够清晰地了解整个部署过程,并且能够根据实际情况进行调整和优化。

三、文档指导明确性评估
2222.png

  1. 在部署方案的过程中,大部分文档指导都比较明确。然而,在数据导入部分,对于不同数据源的数据导入方法描述可以更加详细。
    2222.png

例如,对于我们公司使用的特定手游数据格式,文档中没有给出具体的导入示例,这使得我们在实际操作中需要花费一些时间去摸索。

  1. 另外,在可视化工具的配置方面,文档可以提供更多的实际案例和最佳实践,以便我们更好地选择适合我们业务需求的可视化方案。

四、代码示例评估

  1. 部署过程中提供的代码示例具有一定的实用性,可以作为修改模板。例如,数据导入的代码示例帮助我们快速了解了如何使用 Hologres 的 API 进行数据加载。
    例如:在临时Query查询页面,创建Hologres内部表,用于后续数据实时写入,示例代码如下:
CREATE SCHEMA IF NOT EXISTS hologres_dataset_github_event;
DROP TABLE IF EXISTS hologres_dataset_github_event.hologres_github_event;
BEGIN;
CREATE TABLE hologres_dataset_github_event.hologres_github_event (
  id bigint PRIMARY KEY,
  actor_id bigint,
  actor_login text,
  repo_id bigint,
  repo_name text,
  org_id bigint,
  org_login text,
  type text,
  created_at timestamp with time zone NOT NULL,
  action text,    
  commit_id text,
  member_id bigint,
  language text
);
CALL set_table_property ('hologres_dataset_github_event.hologres_github_event', 'distribution_key', 'id');
CALL set_table_property ('hologres_dataset_github_event.hologres_github_event', 'event_time_column', 'created_at');
CALL set_table_property ('hologres_dataset_github_event.hologres_github_event', 'clustering_key', 'created_at');

COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.id IS '事件ID';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.actor_id IS '事件发起人ID';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.actor_login IS '事件发起人登录名';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.repo_id IS 'repoID';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.repo_name IS 'repo名称';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.org_id IS 'repo所属组织ID';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.org_login IS 'repo所属组织名称';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.type IS '事件类型';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.created_at IS '事件发生时间';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.action IS '事件行为';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.commit_id IS '提交记录ID';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.member_id IS '成员ID';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.language IS '编程语言';

COMMIT;
  1. 但是,在实际应用过程中,我们遇到了一些错误和异常情况。其中一个主要问题是在数据导入时,由于数据格式不兼容,导致部分数据无法正确导入。经过仔细检查代码和数据格式,我们发现需要对数据进行预处理,以满足 Hologres 的数据要求。
  2. 此外,在查询语句的编写过程中,我们也遇到了一些性能问题。文档中可以提供更多关于优化查询性能的指导,例如如何选择合适的索引、如何避免全表扫描等。

五、数据分析需求满足度评估
5555.png

  1. 根据本方案进行部署后,我们认为该方案在一定程度上能够满足我们的数据分析需求。Hologres 提供了快速的查询响应时间和强大的数据分析功能,能够帮助我们及时了解游戏的运营情况和玩家行为。

  2. 然而,仍有一些方面需要改进和补充。首先,对于手游行业特有的数据分析需求,如玩家留存率分析、付费行为分析等,方案中没有提供专门的解决方案或工具。我们希望能够在方案中看到更多针对手游行业的数据分析案例和最佳实践。
    5555.png

  3. 其次,在数据可视化方面,虽然提供了一些基本的可视化工具,但缺乏灵活性和定制性。我们希望能够有更多的可视化选项,以便更好地展示我们的数据分析结果。

  4. 最后,在数据安全方面,方案中没有详细介绍如何保障数据的安全性和隐私性。对于我们这样的互联网手游公司,数据安全是至关重要的,因此我们希望在方案中能够看到更多关于数据安全的考虑和措施。

六、总结

总体而言,《基于 Hologres 搭建轻量 OLAP 分析平台》解决方案具有一定的优势,但也存在一些需要改进的地方。在技术细节、文档指导、代码示例和数据分析需求满足度等方面,都有一定的提升空间。我们希望在未来的版本中,能够看到更加完善的解决方案,以更好地满足我们的业务需求。

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
目录
相关文章
|
19天前
|
存储 消息中间件 OLAP
Hologres+Flink企业级实时数仓核心能力介绍-2024实时数仓Hologres线上公开课03
本次分享由阿里云产品经理骆撷冬(观秋)主讲,主题为“Hologres+Flink企业级实时数仓核心能力”,是2024实时数仓Hologres线上公开课的第三期。课程详细介绍了Hologres与Flink结合搭建的企业级实时数仓的核心能力,包括解决实时数仓分层问题、基于Flink Catalog的Streaming Warehouse实践,并通过典型客户案例展示了其应用效果。
41 10
Hologres+Flink企业级实时数仓核心能力介绍-2024实时数仓Hologres线上公开课03
|
19天前
|
SQL 存储 JSON
实时数仓 Hologres 产品介绍:一体化实时湖仓平台
本次方案的主题是实时数仓 Hologres 产品介绍:一体化实时湖仓平台,介绍了 Hologres 湖仓存储一体,多模式计算一体、分析服务一体和 Data+AI 一体四方面一体化场景,并对其运维监控方面及客户案例进行一定讲解。 1. Hologres :面向未来的一体化实时湖仓 2. 运维监控 3. 客户案例 4. 总结
56 14
|
19天前
|
存储 SQL 运维
Hologres OLAP场景核心能力介绍-2024实时数仓Hologres线上公开课02
本次分享由Hologres产品经理赵红梅(梅酱)介绍Hologres在OLAP场景中的核心能力。内容涵盖OLAP场景的痛点、Hologres的核心优势及其解决方法,包括实时数仓分析、湖仓一体加速、丰富的索引和查询性能优化等。此外,还介绍了Hologres在兼容PG生态、支持多种BI工具以及高级企业级功能如计算组隔离和serverless computing等方面的优势。最后通过小红书和乐元素两个典型客户案例,展示了Hologres在实际应用中的显著效益,如运维成本降低、查询性能提升及成本节省等。
|
20天前
|
SQL 存储 运维
云端问道5期方案教学-基于 Hologres 轻量实时的高性能OLAP分析
本文介绍了基于Hologres的轻量实时高性能OLAP分析方案,涵盖OLAP典型应用场景及Hologres的核心能力。Hologres是阿里云的一站式实时数仓,支持多种数据源同步、多场景查询和丰富的生态工具。它解决了复杂OLAP场景中的技术栈复杂、需求响应慢、开发运维成本高、时效性差、生态兼容弱、业务间相互影响等难题。通过与ClickHouse对比,Hologres在性能、写入更新、主键支持等方面表现更优。文中还展示了小红书、乐元素等客户案例,验证了Hologres在实际应用中的优势,如免运维、查询快、成本节约等。
云端问道5期方案教学-基于 Hologres 轻量实时的高性能OLAP分析
|
1月前
|
DataWorks 关系型数据库 OLAP
云端问道5期实践教学-基于Hologres轻量实时的高性能OLAP分析
本文基于Hologres轻量实时的高性能OLAP分析实践,通过云起实验室进行实操。实验步骤包括创建VPC和交换机、开通Hologres实例、配置DataWorks、创建网关、设置数据源、创建实时同步任务等。最终实现MySQL数据实时同步到Hologres,并进行高效查询分析。实验手册详细指导每一步操作,确保顺利完成。
|
2月前
|
SQL 分布式计算 大数据
湖仓融合:MaxComputee与Hologres基于OpenLake的湖上解决方案
本次主题探讨湖仓融合:MaxCompute与Hologres基于OpenLake的湖上解决方案。首先从数据湖和数据仓库的历史及业界解决方案出发,分析湖仓融合的两种思路;接着针对国内问题,介绍阿里云如何通过MaxCompute和Hologres解决湖仓融合中的挑战,特别是在非结构化数据处理方面的能力。最后,重点讲解Object Table为湖仓增添了SQL生态的非结构化数据处理能力,提升数据处理效率和安全性,使用户能够在云端灵活处理各类数据。
|
2月前
|
SQL 人工智能 自然语言处理
DataWorks年度发布:智能化湖仓一体数据开发与治理平台的演进
阿里云在过去15年中持续为268集团提供数据服务,积累了丰富的实践经验,并连续三年在IDC中国数据治理市场份额中排名第一。新一代智能数据开发平台DateWorks推出了全新的DateStudio IDE,支持湖仓一体化开发,新增Flink计算引擎和全面适配locs,优化工作流程系统和数据目录管理。同时,阿里云正式推出个人开发环境模式和个人Notebook,提升开发者体验和效率。此外,DateWorks Copilot通过自然语言生成SQL、代码补全等功能,显著提升了数据开发与分析的效率,已累计帮助开发者生成超过3200万行代码。
|
2月前
|
SQL 存储 分布式计算
Hologres+Paimon构建一体化实时湖仓
Hologres 3.0全新升级,面向未来的一体化实时湖仓。它支持多种Table Format,提供湖仓存储、多模式计算、分析服务和Data+AI一体的能力。Hologres与Paimon结合,实现统一元数据管理、极速查询性能、增量消费及ETL功能。Dynamic Table支持流式、增量和全量三种刷新模式,满足不同业务需求,实现一份数据、一份SQL、一份计算的多模式刷新。该架构适用于高时效性要求的场景,也可用于成本敏感的数据共享场景。
|
4月前
|
人工智能 自然语言处理 关系型数据库
阿里云云原生数据仓库 AnalyticDB PostgreSQL 版已完成和开源LLMOps平台Dify官方集成
近日,阿里云云原生数据仓库 AnalyticDB PostgreSQL 版已完成和开源LLMOps平台Dify官方集成。
|
4月前
|
人工智能 分布式计算 数据管理
阿里云位居 IDC MarketScape 中国实时湖仓评估领导者类别
国际数据公司( IDC )首次发布了《IDC MarketScape: 中国实时湖仓市场 2024 年厂商评估》,阿里云在首次报告发布即位居领导者类别。

热门文章

最新文章