基于 Hologres 搭建轻量 OLAP 分析平台评测报告

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
云原生数据仓库AnalyticDB MySQL版,基础版 8ACU 100GB 1个月
简介: 【9月更文第6天】开作为互联网手游公司的产品经理和项目经理,数据分析对于我们的业务至关重要。我们一直在寻找高效、可靠的数据分析解决方案,以更好地了解玩家行为、优化游戏体验和提升运营效率。近期,我们体验并部署了《基于 Hologres 搭建轻量 OLAP 分析平台》解决方案,以下是我们对该方案的评测报告。

一、引言

作为互联网手游公司的产品经理和项目经理,数据分析对于我们的业务至关重要。我们一直在寻找高效、可靠的数据分析解决方案,以更好地了解玩家行为、优化游戏体验和提升运营效率。近期,我们体验并部署了《基于 Hologres 搭建轻量 OLAP 分析平台》解决方案,以下是我们对该方案的评测报告。
5555.png

二、方案内容技术细节评估

  1. 方案内容提供了较为丰富的技术细节,从 Hologres 的架构原理、数据存储方式、查询处理机制等方面进行了深入阐述。这使得我们能够较好地理解方案的深层原理。
  2. 在实施方法上,文档详细介绍了如何进行数据导入、创建数据表、设计查询语句以及配置可视化工具等步骤。通过这些指导,我们能够清晰地了解整个部署过程,并且能够根据实际情况进行调整和优化。

三、文档指导明确性评估
2222.png

  1. 在部署方案的过程中,大部分文档指导都比较明确。然而,在数据导入部分,对于不同数据源的数据导入方法描述可以更加详细。
    2222.png

例如,对于我们公司使用的特定手游数据格式,文档中没有给出具体的导入示例,这使得我们在实际操作中需要花费一些时间去摸索。

  1. 另外,在可视化工具的配置方面,文档可以提供更多的实际案例和最佳实践,以便我们更好地选择适合我们业务需求的可视化方案。

四、代码示例评估

  1. 部署过程中提供的代码示例具有一定的实用性,可以作为修改模板。例如,数据导入的代码示例帮助我们快速了解了如何使用 Hologres 的 API 进行数据加载。
    例如:在临时Query查询页面,创建Hologres内部表,用于后续数据实时写入,示例代码如下:
CREATE SCHEMA IF NOT EXISTS hologres_dataset_github_event;
DROP TABLE IF EXISTS hologres_dataset_github_event.hologres_github_event;
BEGIN;
CREATE TABLE hologres_dataset_github_event.hologres_github_event (
  id bigint PRIMARY KEY,
  actor_id bigint,
  actor_login text,
  repo_id bigint,
  repo_name text,
  org_id bigint,
  org_login text,
  type text,
  created_at timestamp with time zone NOT NULL,
  action text,    
  commit_id text,
  member_id bigint,
  language text
);
CALL set_table_property ('hologres_dataset_github_event.hologres_github_event', 'distribution_key', 'id');
CALL set_table_property ('hologres_dataset_github_event.hologres_github_event', 'event_time_column', 'created_at');
CALL set_table_property ('hologres_dataset_github_event.hologres_github_event', 'clustering_key', 'created_at');

COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.id IS '事件ID';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.actor_id IS '事件发起人ID';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.actor_login IS '事件发起人登录名';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.repo_id IS 'repoID';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.repo_name IS 'repo名称';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.org_id IS 'repo所属组织ID';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.org_login IS 'repo所属组织名称';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.type IS '事件类型';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.created_at IS '事件发生时间';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.action IS '事件行为';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.commit_id IS '提交记录ID';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.member_id IS '成员ID';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.language IS '编程语言';

COMMIT;
AI 代码解读
  1. 但是,在实际应用过程中,我们遇到了一些错误和异常情况。其中一个主要问题是在数据导入时,由于数据格式不兼容,导致部分数据无法正确导入。经过仔细检查代码和数据格式,我们发现需要对数据进行预处理,以满足 Hologres 的数据要求。
  2. 此外,在查询语句的编写过程中,我们也遇到了一些性能问题。文档中可以提供更多关于优化查询性能的指导,例如如何选择合适的索引、如何避免全表扫描等。

五、数据分析需求满足度评估
5555.png

  1. 根据本方案进行部署后,我们认为该方案在一定程度上能够满足我们的数据分析需求。Hologres 提供了快速的查询响应时间和强大的数据分析功能,能够帮助我们及时了解游戏的运营情况和玩家行为。

  2. 然而,仍有一些方面需要改进和补充。首先,对于手游行业特有的数据分析需求,如玩家留存率分析、付费行为分析等,方案中没有提供专门的解决方案或工具。我们希望能够在方案中看到更多针对手游行业的数据分析案例和最佳实践。
    5555.png

  3. 其次,在数据可视化方面,虽然提供了一些基本的可视化工具,但缺乏灵活性和定制性。我们希望能够有更多的可视化选项,以便更好地展示我们的数据分析结果。

  4. 最后,在数据安全方面,方案中没有详细介绍如何保障数据的安全性和隐私性。对于我们这样的互联网手游公司,数据安全是至关重要的,因此我们希望在方案中能够看到更多关于数据安全的考虑和措施。

六、总结

总体而言,《基于 Hologres 搭建轻量 OLAP 分析平台》解决方案具有一定的优势,但也存在一些需要改进的地方。在技术细节、文档指导、代码示例和数据分析需求满足度等方面,都有一定的提升空间。我们希望在未来的版本中,能够看到更加完善的解决方案,以更好地满足我们的业务需求。

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
目录
相关文章
Flink+Paimon+Hologres,面向未来的一体化实时湖仓平台架构设计
本文介绍了阿里云实时数仓Hologres负责人姜伟华在Flink Forward Asia 2024上的分享,涵盖实时数仓的发展历程、从实时数仓到实时湖仓的演进,以及总结。文章通过三代实时数仓架构的演变,详细解析了Lambda架构、Kafka实时数仓分层+OLAP、Hologres实时数仓分层复用等方案,并探讨了未来从实时数仓到实时湖仓的演进方向。最后,结合实际案例和Demo展示了Hologres + Flink + Paimon在实时湖仓中的应用,帮助用户根据业务需求选择合适的方案。
381 20
Flink+Paimon+Hologres,面向未来的一体化实时湖仓平台架构设计
鹰角基于 Flink + Paimon + Trino 构建湖仓一体化平台实践项目
本文整理自鹰角网络大数据开发工程师朱正军在Flink Forward Asia 2024上的分享,主要涵盖四个方面:鹰角数据平台架构、数据湖选型、湖仓一体建设及未来展望。文章详细介绍了鹰角如何构建基于Paimon的数据湖,解决了Hudi入湖的痛点,并通过Trino引擎和Ranger权限管理实现高效的数据查询与管控。此外,还探讨了湖仓一体平台的落地效果及未来技术发展方向,包括Trino与Paimon的集成增强、StarRocks的应用以及Paimon全面替换Hive的计划。
鹰角基于 Flink + Paimon + Trino 构建湖仓一体化平台实践项目
湖仓分析|浙江霖梓基于 Doris + Paimon 打造实时/离线一体化湖仓架构
浙江霖梓早期基于 Apache Doris 进行整体架构与表结构的重构,并基于湖仓一体和查询加速展开深度探索与实践,打造了 Doris + Paimon 的实时/离线一体化湖仓架构,实现查询提速 30 倍、资源成本节省 67% 等显著成效。
湖仓分析|浙江霖梓基于 Doris + Paimon 打造实时/离线一体化湖仓架构
实时数仓 Hologres 产品介绍:一体化实时湖仓平台
本次方案的主题是实时数仓 Hologres 产品介绍:一体化实时湖仓平台,介绍了 Hologres 湖仓存储一体,多模式计算一体、分析服务一体和 Data+AI 一体四方面一体化场景,并对其运维监控方面及客户案例进行一定讲解。 1. Hologres :面向未来的一体化实时湖仓 2. 运维监控 3. 客户案例 4. 总结
83 14
云端问道5期方案教学-基于 Hologres 轻量实时的高性能OLAP分析
本文介绍了基于Hologres的轻量实时高性能OLAP分析方案,涵盖OLAP典型应用场景及Hologres的核心能力。Hologres是阿里云的一站式实时数仓,支持多种数据源同步、多场景查询和丰富的生态工具。它解决了复杂OLAP场景中的技术栈复杂、需求响应慢、开发运维成本高、时效性差、生态兼容弱、业务间相互影响等难题。通过与ClickHouse对比,Hologres在性能、写入更新、主键支持等方面表现更优。文中还展示了小红书、乐元素等客户案例,验证了Hologres在实际应用中的优势,如免运维、查询快、成本节约等。
云端问道5期方案教学-基于 Hologres 轻量实时的高性能OLAP分析
云端问道5期实践教学-基于Hologres轻量实时的高性能OLAP分析
本文基于Hologres轻量实时的高性能OLAP分析实践,通过云起实验室进行实操。实验步骤包括创建VPC和交换机、开通Hologres实例、配置DataWorks、创建网关、设置数据源、创建实时同步任务等。最终实现MySQL数据实时同步到Hologres,并进行高效查询分析。实验手册详细指导每一步操作,确保顺利完成。
【实践】基于Hologres+Flink搭建GitHub实时数据查询
本文介绍了如何利用Flink和Hologres构建GitHub公开事件数据的实时数仓,并对接BI工具实现数据实时分析。流程包括创建VPC、Hologres、OSS、Flink实例,配置Hologres内部表,通过Flink实时写入数据至Hologres,查询实时数据,以及清理资源等步骤。
用友畅捷通在Flink上构建实时数仓、挑战与最佳实践
本文整理自用友畅捷通数据架构师王龙强在FFA2024上的分享,介绍了公司在Flink上构建实时数仓的经验。内容涵盖业务背景、数仓建设、当前挑战、最佳实践和未来展望。随着数据量增长,公司面临数据库性能瓶颈及实时数据处理需求,通过引入Flink技术逐步解决了数据同步、链路稳定性和表结构差异等问题,并计划在未来进一步优化链路稳定性、探索湖仓一体架构以及结合AI技术推进数据资源高效利用。
423 25
用友畅捷通在Flink上构建实时数仓、挑战与最佳实践
Hologres+Flink企业级实时数仓核心能力介绍-2024实时数仓Hologres线上公开课03
本次分享由阿里云产品经理骆撷冬(观秋)主讲,主题为“Hologres+Flink企业级实时数仓核心能力”,是2024实时数仓Hologres线上公开课的第三期。课程详细介绍了Hologres与Flink结合搭建的企业级实时数仓的核心能力,包括解决实时数仓分层问题、基于Flink Catalog的Streaming Warehouse实践,并通过典型客户案例展示了其应用效果。
59 10
Hologres+Flink企业级实时数仓核心能力介绍-2024实时数仓Hologres线上公开课03
场景实践 | 基于Flink+Hologres搭建GitHub实时数据分析
基于Flink和Hologres构建的实时数仓方案在数据开发运维体验、成本与收益等方面均表现出色。同时,该产品还具有与其他产品联动组合的可能性,能够为企业提供更全面、更智能的数据处理和分析解决方案。

热门文章

最新文章