图解Kafka:架构设计、消息可靠、数据持久、高性能背后的底层原理

简介: 【8月更文挑战第15天】在构建高吞吐量和高可靠性的消息系统时,Apache Kafka 成为了众多开发者和企业的首选。其独特的架构设计、消息可靠传输机制、数据持久化策略以及高性能实现方式,使得 Kafka 能够在分布式系统中大放异彩。本文将通过图解的方式,深入解析 Kafka 的这些核心特性,帮助读者更好地理解和应用这一强大的消息中间件。


一、Kafka 的架构设计

1723689559037.png

1.1 核心组件

Kafka 的系统架构主要由以下几个核心组件组成:

  • Producer(生产者):负责创建消息并发送到合适的 Broker。
  • Broker(服务实例):负责消息的持久化、中转等功能,是 Kafka 集群的核心节点。
  • Consumer(消费者):从 Broker 拉取消息并进行消费,通常多个消费者构成一个分组,消息只能被同组中的一个消费者消费。
  • ZooKeeper(协调服务):负责管理和协调整个 Kafka 集群,包括 Broker 的元数据、主题的配置信息和消费者组的状态信息。

1.2 消息流转过程

Kafka 中的消息按主题(Topic)分类,每个 Topic 可以被分成多个分区(Partition),分区分布在不同的 Broker 上。生产者将消息发送到指定分区,消费者从分区中拉取消息进行消费。Kafka 通过这种设计实现了消息的并行处理和横向扩容。

二、消息可靠传输

2.1 Ack 策略

Kafka 提供了三种 Ack 策略来保障消息的可靠传输:

  • acks=0:请求发送即认为成功,常用于日志分析场景。
  • acks=1:当 leader partition 写入成功即认为写入成功,但有丢数据的可能。
  • acks=-1:ISR 列表中的所有副本都写入成功才认为写入成功,提供强可靠性保证。

2.2 消息发送策略

Kafka 支持同步(sync)和异步(async)两种消息发送方式。同步发送方式下,生产者会等待所有副本写入成功后再返回;异步发送方式则不等待副本写入成功,提高了性能但可能导致消息丢失。

三、数据持久化

3.1 分段与索引

为防止日志文件过大导致数据检索效率低下,Kafka 将每个分区分为多个分段(Segment),每个分段包含一个日志文件和两个索引文件(.index 和 timeindex)。这种分段和索引机制使得 Kafka 能够高效地管理和检索消息。

3.2 复制与ISR机制

Kafka 使用多副本机制来复制消息,每个消息会被复制到多个 Broker 上。Kafka 会为每个 Partition 维护一个 In-Sync Replicas(ISR)列表,只有在这个列表中的副本才能被认为是同步的。只有当所有 ISR 副本都写入成功后,消息才会被认为已经提交。

四、高性能实现

4.1 顺序写入与批量处理

Kafka 采用顺序写入和批量处理技术,将多个消息批量发送,既节省带宽又提高了发送速度。

4.2 消息压缩

Kafka 支持多种消息压缩格式(如 gzip、snappy、lz4),可以在发送前对消息进行压缩,减少网络带宽的开销。

4.3 PageCache 与零拷贝

Kafka 在消息发送后,并不等待消息写入磁盘后才返回,而是利用 PageCache 缓存机制,在消息写入到 PageCache 后即返回。同时,Kafka 使用零拷贝技术,提高了数据传输效率。

五、总结

Apache Kafka 通过其独特的架构设计、消息可靠传输机制、数据持久化策略以及高性能实现方式,成为了分布式系统中不可或缺的消息中间件。本文通过图解的方式,深入解析了 Kafka 的这些核心特性,希望能够帮助读者更好地理解和应用 Kafka。在未来的工作和学习中,期待大家能够继续深入探索 Kafka 的更多高级特性和应用场景。

目录
相关文章
|
2月前
|
存储 运维 Serverless
千万级数据秒级响应!碧桂园基于 EMR Serverless StarRocks 升级存算分离架构实践
碧桂园服务通过引入 EMR Serverless StarRocks 存算分离架构,解决了海量数据处理中的资源利用率低、并发能力不足等问题,显著降低了硬件和运维成本。实时查询性能提升8倍,查询出错率减少30倍,集群数据 SLA 达99.99%。此次技术升级不仅优化了用户体验,还结合AI打造了“一看”和“—问”智能场景助力精准决策与风险预测。
267 69
|
23天前
|
存储 人工智能 自然语言处理
为什么混合专家模型(MoE)如此高效:从架构原理到技术实现全解析
本文深入探讨了混合专家(MoE)架构在大型语言模型中的应用与技术原理。MoE通过稀疏激活机制,在保持模型高效性的同时实现参数规模的大幅扩展,已成为LLM发展的关键趋势。文章分析了MoE的核心组件,包括专家网络与路由机制,并对比了密集与稀疏MoE的特点。同时,详细介绍了Mixtral、Grok、DBRX和DeepSeek等代表性模型的技术特点及创新。MoE不仅解决了传统模型扩展成本高昂的问题,还展现出专业化与适应性强的优势,未来有望推动AI工具更广泛的应用。
65 4
为什么混合专家模型(MoE)如此高效:从架构原理到技术实现全解析
|
16天前
|
存储 关系型数据库 数据库
高性能云盘:一文解析RDS数据库存储架构升级
性能、成本、弹性,是客户实际使用数据库过程中关注的三个重要方面。RDS业界率先推出的高性能云盘(原通用云盘),是PaaS层和IaaS层的深度融合的技术最佳实践,通过使用不同的存储介质,为客户提供同时满足低成本、低延迟、高持久性的体验。
|
25天前
|
机器学习/深度学习 算法 测试技术
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
本文探讨了基于图的重排序方法在信息检索领域的应用与前景。传统两阶段检索架构中,初始检索速度快但结果可能含噪声,重排序阶段通过强大语言模型提升精度,但仍面临复杂需求挑战
64 0
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
|
1月前
|
消息中间件 数据可视化 Kafka
docker arm架构部署kafka要点
本内容介绍了基于 Docker 的容器化解决方案,包含以下部分: 1. **Docker 容器管理**:通过 Portainer 可视化管理工具实现对主节点和代理节点的统一管理。 2. **Kafka 可视化工具**:部署 Kafka-UI 以图形化方式监控和管理 Kafka 集群,支持动态配置功能, 3. **Kafka 安装与配置**:基于 Bitnami Kafka 镜像,提供完整的 Kafka 集群配置示例,涵盖 KRaft 模式、性能调优参数及数据持久化设置,适用于高可用生产环境。 以上方案适合 ARM64 架构,为用户提供了一站式的容器化管理和消息队列解决方案。
100 10
|
2月前
|
消息中间件 存储 设计模式
RocketMQ原理—5.高可用+高并发+高性能架构
本文主要从高可用架构、高并发架构、高性能架构三个方面来介绍RocketMQ的原理。
376 21
RocketMQ原理—5.高可用+高并发+高性能架构
|
1月前
|
Java 开发者 Spring
Spring框架 - 深度揭秘Spring框架的基础架构与工作原理
所以,当你进入这个Spring的世界,看似一片混乱,但细看之下,你会发现这里有个牢固的结构支撑,一切皆有可能。不论你要建设的是一座宏大的城堡,还是个小巧的花园,只要你的工具箱里有Spring,你就能轻松搞定。
88 6
|
16天前
|
消息中间件 存储 大数据
阿里云消息队列 Kafka 架构及典型应用场景
阿里云消息队列 Kafka 是一款基于 Apache Kafka 的分布式消息中间件,支持消息发布与订阅模型,满足微服务解耦、大数据处理及实时流数据分析需求。其通过存算分离架构优化成本与性能,提供基础版、标准版和专业版三种 Serverless 版本,分别适用于不同业务场景,最高 SLA 达 99.99%。阿里云 Kafka 还具备弹性扩容、多可用区部署、冷热数据缓存隔离等特性,并支持与 Flink、MaxCompute 等生态工具无缝集成,广泛应用于用户行为分析、数据入库等场景,显著提升数据处理效率与实时性。
|
2月前
|
机器学习/深度学习 传感器 自然语言处理
基于Transformer架构的时间序列数据去噪技术研究
本文介绍了一种基于Transformer架构的时间序列去噪模型。通过生成合成数据训练,模型在不同噪声条件下展现出强去噪能力。文章详细解析了Transformer的输入嵌入、位置编码、自注意力机制及前馈网络等关键组件,并分析实验结果与注意力权重分布。研究为特定任务的模型优化和专业去噪模型开发奠定了基础。
193 14
基于Transformer架构的时间序列数据去噪技术研究
|
1月前
|
消息中间件 缓存 算法
分布式开发:数字时代的高性能架构革命-为什么要用分布式?优雅草卓伊凡
分布式开发:数字时代的高性能架构革命-为什么要用分布式?优雅草卓伊凡
103 0
分布式开发:数字时代的高性能架构革命-为什么要用分布式?优雅草卓伊凡