一、引言
这里的Transformers指的是huggingface开发的大模型库,为huggingface上数以万计的预训练大模型提供预测、训练等服务。
🤗 Transformers 提供了数以千计的预训练模型,支持 100 多种语言的文本分类、信息抽取、问答、摘要、翻译、文本生成。它的宗旨是让最先进的 NLP 技术人人易用。
🤗 Transformers 提供了便于快速下载和使用的API,让你可以把预训练模型用在给定文本、在你的数据集上微调然后通过 model hub 与社区共享。同时,每个定义的 Python 模块均完全独立,方便修改和快速研究实验。
🤗 Transformers 支持三个最热门的深度学习库: Jax, PyTorch 以及 TensorFlow — 并与之无缝整合。你可以直接使用一个框架训练你的模型然后用另一个加载和推理。
本文重点介绍Hugging Face的Datasets Viewer用法
二、Datasets Viewer数据查看器
2.1 概述
Datasets Viewer是一个轻量级的 Web API,用于可视化和探索存储在 Hugging Face Hub上的所有类型的数据集(计算机视觉、语音、文本和表格)。
数据集查看器的主要功能是将所有Hub 数据集自动转换为Parquet。
随着数据集的大小和数据类型的丰富性不断增加,预处理(存储和计算)这些数据集的成本可能非常高且耗时。为了帮助用户访问这些现代数据集,数据集查看器在后台运行服务器以提前生成 API 响应并将其存储在数据库中,以便当您通过 API 进行查询时立即返回它们。
让数据集查看器处理繁重的工作,这样您就可以在 Hugging Face 上的 100,000 多个数据集中的任何一个上使用简单的REST API来:
- 列出数据集拆分、列名称和数据类型
- 获取数据集大小(以行数或字节数计算)
- 下载并查看数据集中任意索引处的行
- 在数据集中搜索单词
- 根据查询字符串过滤行
- 获取有关数据的深刻统计数据
- 以parquet 文件形式访问数据集,以便在您喜欢的处理或分析框架中使用
2.2 示例
比如,这是ShareGPT4Video/ShareGPT4Video数据集的Dataset Viewer
三、总结
以上步骤展示了如何使用Datasets Viewer
来查看数据,Datasets是hugging face主要我存储资源之一,通过Datasets Viewer可以快速查看。