Linux平台下RTSP|RTMP播放器如何跟python交互投递RGB数据供视觉算法分析

本文涉及的产品
视觉智能开放平台,图像资源包5000点
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,视频资源包5000点
简介: 在对接Linux平台的RTSP播放模块时,需将播放数据同时提供给Python进行视觉算法分析。技术实现上,可在播放时通过回调函数获取视频帧数据,并以RGB32格式输出。利用`SetVideoFrameCallBackV2`接口设定缩放后的视频帧回调,以满足算法所需的分辨率。回调函数中,每收到一帧数据即保存为bitmap文件。Python端只需读取指定文件夹中的bitmap文件,即可进行视频数据的分析处理。此方案简单有效,但应注意控制输出的bitmap文件数量以避免内存占用过高。

技术背景

我们在对接Linux平台RTSP播放模块的时候,遇到这样的技术需求,开发者需要把Linux RTSP播放器拉取的数据,除了实时播放外,还要投递给python,用于视觉算法分析。

技术实现

Linux平台RTSP、RTMP直接播放不再赘述,这块我们非常成熟,python需要数据,我们可以在播放的同时,直接把数据回上来。回上来的数据,跟python交互,有多种方式,比如共享内存、或者写bitmap文件,然后python实时读取就好。

本文以写bitmap为例,介绍下大概的实现:

NT_HANDLE handle = nullptr;
    // 打开一个播放实例,可以Open多个播放实例, 然后播放多路
    if (NT_ERC_OK != player_api.Open(&handle, 0, nullptr))
    {
        player_api.UnInit();
        fprintf(stderr, "player_api.Open failed!\n");
        XDestroyWindow(display, sub_wid);
        XDestroyWindow(display, main_wid_);
        XCloseDisplay(display);
        return 0;
    }
    player_api.SetEventCallBack(handle, nullptr, &NT_OnSDKEventHandle);
    player_api.SetVideoSizeCallBack(handle, nullptr, &NT_SDKVideoSizeHandle);
    player_api.SetReportDownloadSpeed(handle, 1, 5); // 5秒上报一次下载速度
    player_api.SetRtspTimeout(handle, 15);
    player_api.SetRtspAutoSwitchTcpUdp(handle, 1);
    player_api.SetBuffer(handle, 0); // 设置缓存
    player_api.SetIsOutputAudioDevice(handle, 1);
    player_api.SetAudioOutputLayer(handle, 0); // 使用pluse 或者 alsa播放, 两个可以选择一个
    //player_api.SetAudioVolume(handle, 100);
    player_api.SetURL(handle, player_url_); // 设置播放地址, rtsp或者rtmp地址
    //player_api.SetXDisplayName(handle, NULL);
    player_api.SetXScreenNumber(handle, screen);
    player_api.SetRenderXWindow(handle, sub_wid); // 设置绘制的X窗口
    player_api.SetRenderScaleMode(handle, 1); // 按比例绘制或者全填充
    player_api.SetRenderTextureScaleFilterMode(handle, 3); 
    //player_api.SetVideoFrameCallBack(handle, NT_SP_E_VIDEO_FRAME_FROMAT_I420, nullptr, &NT_SDK_SDKVideoFrameCallBack);
#if NEED_SAVE_BITMAP
    // player_api.SetVideoFrameCallBack(handle, NT_SP_E_VIDEO_FRAME_FORMAT_RGB32, nullptr, &NT_SDK_SDKVideoFrameCallBack);
    player_api.SetVideoFrameCallBackV2(handle, 640, 360, 3, NT_SP_E_VIDEO_FRAME_FORMAT_RGB32, nullptr, &NT_SDK_SDKVideoFrameCallBack);
#endif

image.gif

开始播放之前,设置videoframe回调(本文以rgb32为例),videoframe回调,我们有两组接口,一组是原始数据回调,另外一组,是回调缩放后的数据,这里考虑到算法识别对分辨率的要求,我们以缩放的接口为例。

/*
 * nt_linux_smart_player_sdk.h
 * Author: daniusdk.com
 */
/*
设置视频回调, 吐视频数据出来, 可以指定吐出来的视频宽高
*handle: 播放句柄
*scale_width:缩放宽度(必须是偶数,建议是 16 的倍数)
*scale_height:缩放高度(必须是偶数
*scale_filter_mode: 缩放质量, 0 的话 SDK 将使用默认值, 目前可设置范围为[1, 3], 值越大 缩放质量越好,但越耗性能
*frame_format: 只能是NT_SP_E_VIDEO_FRAME_FORMAT_RGB32, NT_SP_E_VIDEO_FRAME_FROMAT_I420
成功返回NT_ERC_OK
*/
NT_UINT32(NT_API *SetVideoFrameCallBackV2)(NT_HANDLE handle,
    NT_INT32 scale_width, NT_INT32 scale_height,
    NT_INT32 scale_filter_mode, NT_INT32 frame_format,
    NT_PVOID call_back_data, SP_SDKVideoFrameCallBack call_back);

image.gif

开始播放后,video frame数据回调处理如下:

extern "C" void NT_SDK_SDKVideoFrameCallBack(NT_HANDLE handle, NT_PVOID user_data, NT_UINT32 status,
    const NT_SP_VideoFrame* frame)
{
    if (!frame)
        return;
    fprintf(stdout, "OnSDKVideoFrameCallBack handle:%p frame:%p, timestamp:%llu\n", handle, frame, frame->timestamp_);
#if NEED_SAVE_BITMAP
    if (NT_SP_E_VIDEO_FRAME_FORMAT_RGB32 == frame->format_
        || NT_SP_E_VIDEO_FRAME_FORMAT_ARGB == frame->format_) {
        struct timeval tv;
        if (gettimeofday(&tv, nullptr) != 0) {
            fprintf(stderr, "save bitmap file call gettimeofday failed");
            return;
        }
        uint64_t local_time_us = tv.tv_sec*UINT64_C(1000000) + tv.tv_usec;
        char file_name[128] = { 0 };
        sprintf(file_name, "./outbitmaps/%llu.bmp", (unsigned long long)local_time_us);
        if (!save_bitmap_file(frame->width_, frame->height_, frame->plane0_, frame->stride0_, frame->stride0_*frame->height_, file_name))
            fprintf(stderr, "save bitmap file failed, name:%s", file_name);
        else
            g_bitmap_file_names_.emplace_back(file_name);
        while (g_bitmap_file_names_.size() > 32) {
            remove(g_bitmap_file_names_.front().c_str());
            g_bitmap_file_names_.pop_front();
        }
    }
#endif // NEED_SAVE_BITMAP
}

image.gif

video frame回调后的数据,直接调研save_bitmap_file()实现bitmap文件写入即可,写bitmap非常简单,这里不再赘述,整体效果如下:

image.gif

python程序,只需要到指定的文件夹下,读取生成的bitmap即可,实现视频数据视觉算法分析。

总结

Linux平台RTSP、RTMP播放器数据跟python交互,两种方式均可,bitmap实现,也不麻烦,需要注意的时候,由于解码后的单帧数据比较大,建议适当控制导出的bitmap文件数。

相关文章
|
8天前
|
算法 前端开发 数据处理
小白学python-深入解析一位字符判定算法
小白学python-深入解析一位字符判定算法
22 0
|
11天前
|
机器学习/深度学习 算法 搜索推荐
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【10月更文挑战第4天】在大数据时代,算法效率至关重要。本文从理论入手,介绍时间复杂度和空间复杂度两个核心概念,并通过冒泡排序和快速排序的Python实现详细分析其复杂度。冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1);快速排序平均时间复杂度为O(n log n),空间复杂度为O(log n)。文章还介绍了算法选择、分而治之及空间换时间等优化策略,帮助你在大数据挑战中游刃有余。
38 4
|
11天前
|
机器学习/深度学习 缓存 算法
Python算法设计中的时间复杂度与空间复杂度,你真的理解对了吗?
【10月更文挑战第4天】在Python编程中,算法的设计与优化至关重要,尤其在数据处理、科学计算及机器学习领域。本文探讨了评估算法性能的核心指标——时间复杂度和空间复杂度。通过详细解释两者的概念,并提供快速排序和字符串反转的示例代码,帮助读者深入理解这些概念。同时,文章还讨论了如何在实际应用中平衡时间和空间复杂度,以实现最优性能。
43 6
|
9天前
|
存储 机器学习/深度学习 算法
蓝桥杯练习题(三):Python组之算法训练提高综合五十题
蓝桥杯Python编程练习题的集合,涵盖了从基础到提高的多个算法题目及其解答。
17 3
蓝桥杯练习题(三):Python组之算法训练提高综合五十题
|
9天前
|
前端开发 数据可视化 API
Python实现智能家居设备的统一控制平台
【10月更文挑战第6天】 Python实现智能家居设备的统一控制平台
28 11
|
6天前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
18 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
12天前
|
弹性计算 Linux 数据库
阿里云国际版如何迁移Linux云服务器系统盘中的数据
阿里云国际版如何迁移Linux云服务器系统盘中的数据
|
14天前
|
存储 算法 安全
Python 加密算法详解与应用
Python 加密算法详解与应用
13 1
|
12天前
|
搜索推荐 算法 Shell
Python 金典的“八大排序算法”
Python 金典的“八大排序算法”
14 0
|
14天前
|
算法 安全 Go
Python与Go语言中的哈希算法实现及对比分析
Python与Go语言中的哈希算法实现及对比分析
20 0