基于python的k-means聚类分析算法,对文本、数据等进行聚类,有轮廓系数和手肘法检验

简介: 本文详细介绍了基于Python实现的k-means聚类分析算法,包括数据准备、预处理、标准化、聚类数目确定、聚类分析、降维可视化以及结果输出的完整流程,并应用该算法对文本数据进行聚类分析,展示了轮廓系数法和手肘法检验确定最佳聚类数目的方法。

K-means算法是一种常见的聚类算法,用于将数据点分成不同的组(簇),使同一组内的数据点彼此相似,不同组之间的数据点相对较远。以下是K-means算法的基本工作原理和步骤:

工作原理:

初始化:选择K个初始聚类中心点(质心)。
分配:将每个数据点分配到最接近的聚类中心,形成K个簇。
更新:根据每个簇中的数据点重新计算聚类中心。
迭代:重复步骤2和3,直到满足停止条件(如聚类中心不再改变或达到最大迭代次数)。

算法步骤:

初始化:随机选择K个数据点作为初始聚类中心。
分配:对于每个数据点,计算其与各个聚类中心的距离,将其分配给距离最近的聚类中心。
更新:重新计算每个簇的聚类中心,使用该簇内所有数据点的平均值。
迭代:重复步骤2和3,直到聚类中心稳定或达到最大迭代次数。

优点:

简单且高效,适用于大规模数据集。
对于球状簇具有很好的效果,易于解释。

缺点:

需要预先设定聚类数K。
对异常值和噪声敏感。
结果可能受初始聚类中心的选择影响。

应用领域:

图像分割、文本聚类、市场分析、推荐系统等。

实现聚类分析的基本步骤如下:

数据准备与预处理:

读取数据:从Excel文件中读取数据,对数据进行去重和缺失值处理。
特征选择:选择用于聚类分析的特征列,如'地区发展程度'、'时间间隔'、'评论回复数'、'评论点赞数'等。

df.drop\_duplicates(subset=\['评论'\], keep='first', inplace=True)
df.dropna(subset=\['评论'\],axis=0,inplace=True)
# 将评论时间列转换为时间格式
df\['评论时间'\] = pd.to\_datetime(df\['评论时间'\])
# 计算每个时间点距禖当前时间的时间间隔(单位:秒)
current\_time = datetime.now()
df\['时间间隔'\] = round((current\_time - df\['评论时间'\]).dt.total\_seconds().astype(int)/86400,1)
print(df.info())
# 创建一个字典,用于映射地区与发展水平的关系
region\_mapping = {
    '发达地区': \['北京省', '上海省', '天津省', '上海省'\],
    '普通地区': \['广东省', '江苏省', '浙江省', '福建省', '湖北省', '湖南省', '安徽省', '江西省', '山东省', '辽宁省', '吉林省', '黑龙江省'\],
    '发展地区': \['重庆省', '河南省', '四川省', '陕西省', '天津省', '山西省', '内蒙古省', '河北省', '广西省', '海南省', '河南省', '河北省', '山西省', '内蒙古省', '宁夏省', '青海省', '甘肃省',
             '陕西省', '新疆省'\],
    '未知': \['设置了隐私'\],
}

数据标准化:

使用StandardScaler对特征数据进行标准化,使数据具有零均值和单位方差。

scaler = StandardScaler()
X\_data = scaler.fit\_transform(X\_data)

确定聚类数目:

使用“肘部法”和“轮廓系数法”等方法确定合适的聚类数目。

\# 构造自定义函数,用于绘制不同k值和对应总的簇内离差平方和的折线图
def k\_SSE(X, clusters):
    # 选择连续的K种不同的值
    K = range(1, clusters + 1)
    # 构建空列表用于存储总的簇内离差平方和
    TSSE = \[\]
    for k in K:
        # 用于存储各个簇内离差平方和
        SSE = \[\]
        kmeans = KMeans(n\_clusters=k)
        kmeans.fit(X)
        # 返回簇标签
        labels = kmeans.labels\_
        # 返回簇中心
        centers = kmeans.cluster\_centers\_
        # 计算各簇样本的离差平方和,并保存到列表中
        for label in set(labels):
            SSE.append(np.sum((X\[labels == label, :\] - centers\[label, :\]) \*\* 2))
        # 计算总的簇内离差平方和
        TSSE.append(np.sum(SSE))

    # 中文和负号的正常显示
    plt.rcParams\['font.sans-serif'\] = \['Microsoft YaHei'\]
    plt.rcParams\['axes.unicode\_minus'\] = False
    # 设置绘图风格
    plt.style.use('ggplot')
    # 绘制K的个数与GSSE的关系
    plt.plot(K, TSSE, 'b\*-')
    plt.xlabel('簇的个数')
    plt.ylabel('簇内离差平方和之和')
    plt.title('手肘法')
    # 显示图形
    plt.show()

聚类分析:

使用自定义的KMeans类或Sklearn中的KMeans进行聚类分析,传入特征数据和确定的聚类数目。
获取聚类标签并将其与特征数据关联。

n\_clusters = 5
km = KMeans(n\_clusters=n\_clusters).fit(X\_data)

#% 降维后画图显示聚类结果
#将原始数据中的索引设置成得到的数据类别
X\_rsl = pd.DataFrame(X\_data,index=km.labels\_)
X\_rsl\_center = pd.DataFrame(km.cluster\_centers\_) #找出聚类中心

降维可视化:

使用TSNE对聚类结果进行降维处理,将高维数据降至二维或三维。
利用降维后的数据和聚类中心绘制散点图,根据聚类结果进行着色展示。

tsne = TSNE()
tsne.fit\_transform(X\_rslwithcenter) #进行数据降维,并返回结果

结果输出:

将聚类标签与原始数据关联,将聚类结果输出到Excel文件中。

相关文章
|
9天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
16天前
|
存储 编解码 负载均衡
数据分片算法
【10月更文挑战第25天】不同的数据分片算法适用于不同的应用场景和数据特点,在实际应用中,需要根据具体的业务需求、数据分布情况、系统性能要求等因素综合考虑,选择合适的数据分片算法,以实现数据的高效存储、查询和处理。
|
16天前
|
存储 缓存 算法
分布式缓存有哪些常用的数据分片算法?
【10月更文挑战第25天】在实际应用中,需要根据具体的业务需求、数据特征以及系统的可扩展性要求等因素综合考虑,选择合适的数据分片算法,以实现分布式缓存的高效运行和数据的合理分布。
|
28天前
|
机器学习/深度学习 人工智能 算法
"拥抱AI规模化浪潮:从数据到算法,解锁未来无限可能,你准备好迎接这场技术革命了吗?"
【10月更文挑战第14天】本文探讨了AI规模化的重要性和挑战,涵盖数据、算法、算力和应用场景等方面。通过使用Python和TensorFlow的示例代码,展示了如何训练并应用一个基本的AI模型进行图像分类,强调了AI规模化在各行业的广泛应用前景。
29 5
|
20天前
|
存储 JSON 算法
TDengine 检测数据最佳压缩算法工具,助你一键找出最优压缩方案
在使用 TDengine 存储时序数据时,压缩数据以节省磁盘空间是至关重要的。TDengine 支持用户根据自身数据特性灵活指定压缩算法,从而实现更高效的存储。然而,如何选择最合适的压缩算法,才能最大限度地降低存储开销?为了解决这一问题,我们特别推出了一个实用工具,帮助用户快速判断并选择最适合其数据特征的压缩算法。
28 0
|
30天前
|
人工智能 算法 前端开发
无界批发零售定义及无界AI算法,打破传统壁垒,累积数据流量
“无界批发与零售”是一种结合了批发与零售的商业模式,通过后端逻辑、数据库设计和前端用户界面实现。该模式支持用户注册、登录、商品管理、订单处理、批发与零售功能,并根据用户行为计算信用等级,确保交易安全与高效。
|
30天前
|
前端开发 算法 JavaScript
无界SaaS模式深度解析:算力算法、链接力、数据确权制度
私域电商的无界SaaS模式涉及后端开发、前端开发、数据库设计、API接口、区块链技术、支付和身份验证系统等多个技术领域。本文通过简化框架和示例代码,指导如何将核心功能转化为技术实现,涵盖用户管理、企业店铺管理、数据流量管理等关键环节。
|
1月前
|
机器学习/深度学习 算法 数据处理
EM算法对人脸数据降维(机器学习作业06)
本文介绍了使用EM算法对人脸数据进行降维的机器学习作业。首先通过加载ORL人脸数据库,然后分别应用SVD_PCA、MLE_PCA及EM_PCA三种方法实现数据降维,并输出降维后的数据形状。此作业展示了不同PCA变种在人脸数据处理中的应用效果。
32 0
|
1月前
|
存储 算法 搜索推荐
算法进阶之路:Python 归并排序深度剖析,让数据排序变得艺术起来!
算法进阶之路:Python 归并排序深度剖析,让数据排序变得艺术起来!
70 0