【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 建模及python代码详解 问题二

简介: 本文提供了第十一届泰迪杯数据挖掘挑战赛B题问题二的详细解题步骤,包括时间序列预测模型的建立、多元输入时间预测问题的分析、时间序列预测的建模步骤、改进模型的方法,以及使用Python进行SARIMA模型拟合和预测的具体实现过程。

请添加图片描述

相关链接

【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 建模及python代码详解 问题一
【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 建模及python代码详解 问题二

请添加图片描述

1 题目

完整题目参考问题一的文章
基于问题一的分析,建立数学模型,对附件预测数据(predict_sku1.csv)中给出的产品,预测未来 3 月(即 2019 年 1 月、2 月、3 月)的月需求量,将预测结果按照表 3 的格式保存为文件 result1.xlsx,与论文一起提交。请分别按天、周、月的时间粒度进行预测,试分析不同的预测粒度对预测精度会产生什么样的影响。
在这里插入图片描述

2 问题二解析

2.1 问题分析

这是一个时间预测模型,常用的时间序列预测模型包括:

  • 自回归移动平均模型(ARMA)
  • 自回归积分移动平均模型(ARIMA)
  • 季节性自回归积分移动平均模型(SARIMA)
  • 自回归条件异方差模型(ARCH)
  • 长短期记忆模型(LSTM)

在此任务中,是一个多输入的时间预测问题,在时间序列预测模型中,采用多个输入的模型主要包括以下几种:

  1. ARIMAX模型:在ARIMA模型的基础上,增加外生变量作为模型的输入,以考虑外部因素对时间序列的影响。
  2. VAR模型:矢量自回归模型(Vector Autoregression Model,VAR)是一种多元时间序列模型,能够考虑多个时间序列之间的相互影响关系。
  3. LSTM模型:长短期记忆网络(Long Short-Term Memory,LSTM)是一种循环神经网络,能够对时间序列的长期依赖性进行建模,同时也支持多个输入的模型。
  4. Prophet模型:由Facebook开发的预测模型,采用加性模型,并且可以考虑多个外生变量,具有较好的可解释性。
  5. SARIMAX模型:季节性自回归移动平均模型(Seasonal ARIMA with External Regressors,SARIMAX)是ARIMAX模型的扩展,能够考虑季节性变化,并且也支持多个外生变量的输入。

这些模型可以通过引入多个外部变量来提高时间序列预测的准确性和可解释性,但也需要注意过拟合和变量选择的问题。在具体应用中,需要根据数据特点和预测目标选择合适的模型。

2.2 时间序列预测问题的建模步骤

  1. 数据清洗和处理:对历史数据进行清洗和处理,包括去除异常值、缺失值处理等。此外,还需要将数据按照时间序列的方式进行排序。
  2. 时间序列分解:将时间序列数据分解为趋势、季节和随机成分。这可以通过拟合加法模型或乘法模型来实现。其中加法模型假定季节成分与趋势成分之和等于原始数据,而乘法模型假定季节成分与趋势成分的乘积等于原始数据。
  3. 模型选择和拟合:选择合适的时间序列模型对趋势、季节和随机成分进行拟合。一般常用的模型包括ARIMA模型、指数平滑模型等。
  4. 模型诊断:对拟合好的模型进行诊断,检验其残差是否符合正态分布、是否存在自相关性等。
  5. 模型预测:使用已经拟合好的模型进行未来需求量的预测,并计算预测精度。

在此任务中,首先,读取训练集和预测集数据,并将训练集中的日期列转换为日期类型,并将其设置为数据集的索引。接着,将数据按照一定的维度进行分组,并将每个组的时间序列进行了平稳性检验,若不平稳则进行一阶或者多阶差分,直到序列平稳。然后,使用 SARIMA 模型对每个分组的差分序列进行拟合,并预测未来三个月的需求量。在预测过程中,针对每个预测样本,根据其销售区域、产品、大类和细类,生成外部变量,用于对模型进行外部扰动。最后,将预测结果保存到 Excel 文件中。

2.3 改进的角度

有许多方法可以改进时间序列预测模型,下面列出了几种常见的方法:

  1. 调整模型参数:可以通过调整模型的参数来改善模型的性能。例如,对于ARIMA模型,可以调整p、d、q参数,对于LSTM模型,可以调整神经元数量、学习率、迭代次数等参数。需要注意的是,参数调整需要进行交叉验证等方法来评估模型的性能和泛化能力。
  2. 增加特征:通过增加更多的特征来提高模型的预测准确度。除了历史数据特征和时间特征之外,还可以考虑其他相关特征,例如,天气数据、经济数据等,可以对时间序列的预测结果产生影响。
  3. 数据增强:通过增加更多的历史数据来提高模型的预测准确度。可以通过扩展历史数据范围或增加数据精度等方式来增加历史数据。
  4. 模型融合:将多个模型的预测结果进行加权平均或堆叠等方式来提高模型的预测准确度。模型融合可以通过多个模型的优点互补来提高整体的预测效果。
  5. 使用集成学习:集成学习是一种通过将多个基本模型进行组合来提高整体预测效果的方法。例如,可以通过Bagging、Boosting等方式将多个决策树、LSTM等基本模型进行组合。
  6. 调整训练数据:可以通过对训练数据进行平滑处理、滑动窗口等方式来提高模型的预测准确度。例如,可以通过移动平均、指数平滑等方式对训练数据进行平滑处理。

需要注意的是,模型改进需要进行交叉验证等方法来评估模型的性能和泛化能力,以避免模型过拟合或欠拟合的情况。

3 python实现

由于目前未提供完整数据,在运行以下代码时,会报错:ValueError: sample size is too short to use selected regression component,是因为此时数据集中的某个区域下的产品样本太少,不足以构成时间序列,所以不能差分。

3.1 以月为时间粒度

对以下代码进行注释,并说明思路:
import pandas as pd
import statsmodels.api as sm
from datetime import datetime, timedelta

train_data = pd.read_csv('data/order_train0.csv')
predict_data = pd.read_csv('data/predict_sku0.csv')

train_data['order_date'] = pd.to_datetime(train_data['order_date'])
train_data = train_data.set_index('order_date')

。。。略,请下载完整代码

def make_stationary(ts):
    # 一阶差分
    ts_diff = ts.diff().dropna()
    # 进一步差分,直到平稳
    while not sm.tsa.stattools.adfuller(ts_diff)[1] < 0.05:
        ts_diff = ts_diff.diff().dropna()
    return ts_diff

train_ts_diff = train_ts.groupby(['sales_region_code', 'item_code', 'first_cate_code', 'second_cate_code']).apply(make_stationary)

order = (1, 1, 1)
seasonal_order = (1, 0, 1, 12)

model = sm.tsa.statespace.SARIMAX(train_ts_diff, order=order, seasonal_order=seasonal_order, enforce_stationarity=False, enforce_invertibility=False)
result = model.fit()

# 预测未来三个月的数据

start_date = datetime(2019, 1, 1)
end_date = datetime(2019, 3, 31)
predict_dates = pd.date_range(start=start_date, end=end_date, freq='M')

# 预测每个销售区域、产品、大类和细类的需求量

predict = pd.DataFrame()
for i in range(len(predict_data)):
    # 生成外部变量
    predict_exog = pd.DataFrame(predict_data.iloc[i, :]).T.set_index(['sales_region_code', 'item_code', 'first_cate_code', 'second_cate_code'])
    predict_exog.index = pd.MultiIndex.from_tuples(predict_exog.index)
    predict_exog = predict_exog.reindex(index=train_ts_diff.index.union(predict_exog.index), fill_value=0).sort_index()
    predict_exog = predict_exog.loc[predict_dates]
    # 预测未来三个月的需求量
    predict_diff = result.get_forecast(steps=len(predict_dates), exog=predict_exog, dynamic=True)

    # 将预测出的差分值加上训练集最后一月的差分值
    predict_diff_predicted = predict_diff.predicted_mean
    predict_diff_predicted = predict_diff_predicted + train_ts_diff.iloc[-1]

    # 将差分值转换为预测值
    predict_predicted = predict_diff_predicted.cumsum() + train_ts.iloc[-1]

   # 将预测结果保存到DataFrame中
    predict_temp = pd.DataFrame({'sales_region_code': [predict_data.iloc[i, 0]], 'item_code': [predict_data.iloc[i, 1]],
                                 '2019年1月预测需求量': predict_predicted.loc['2019-01-01':'2019-01-31'].sum(),
                                 '2019年2月预测需求量': predict_predicted.loc['2019-02-01':'2019-02-28'].sum(),
                                 '2019年3月预测需求量': predict_predicted.loc['2019-03-01':'2019-03-31'].sum()})
    predict = pd.concat([predict, predict_temp], ignore_index=True)

# 将预测结果保存到Excel文件中
predict.to_excel('result1.xlsx', index=False)

3.2 以天为时间粒度

import pandas as pd
import statsmodels.api as sm
from datetime import datetime, timedelta

train_data = pd.read_csv('data/order_train0.csv')
predict_data = pd.read_csv('data/predict_sku0.csv')
train_data['order_date'] = pd.to_datetime(train_data['order_date'])
train_data = train_data.set_index('order_date')
train_ts = train_data.groupby(['sales_region_code', 'item_code', 'first_cate_code', 'second_cate_code'])['ord_qty'].resample('D').sum()

def make_stationary(ts):
    # 一阶差分
    ts_diff = ts.diff().dropna()
    # 进一步差分,直到平稳
    while not sm.tsa.stattools.adfuller(ts_diff)[1] < 0.05:
        ts_diff = ts_diff.diff().dropna()
    return ts_diff

。。。略,请下载完整代码
order = (1, 1, 1)
seasonal_order = (1, 0, 1, 12)

model = sm.tsa.statespace.SARIMAX(train_ts_diff, order=order, seasonal_order=seasonal_order, enforce_stationarity=False, enforce_invertibility=False)
result = model.fit()

# 预测未来三个月的数据
start_date = datetime(2019, 1, 1)
end_date = datetime(2019, 3, 31)
predict_dates = pd.date_range(start=start_date, end=end_date, freq='D')

# 预测每个销售区域、产品、大类和细类的需求量
predict = pd.DataFrame()
for i in range(len(predict_data)):
    # 生成外部变量
    predict_exog = pd.DataFrame(predict_data.iloc[i, :]).T.set_index(['sales_region_code', 'item_code', 'first_cate_code', 'second_cate_code'])
    predict_exog.index = pd.MultiIndex.from_tuples(predict_exog.index)
    predict_exog = predict_exog.reindex(index=train_ts_diff.index.union(predict_exog.index), fill_value=0).sort_index()
    predict_exog = predict_exog.loc[predict_dates]

    # 预测未来三个月的需求量
    predict_diff = result.get_forecast(steps=len(predict_dates), exog=predict_exog, dynamic=True)

    # 将预测出的差分值加上训练集最后一天的差分值
    predict_diff_predicted = predict_diff.predicted_mean
    predict_diff_predicted = predict_diff_predicted + train_ts_diff.iloc[-1]

    # 将差分值转换为预测值
    predict_predicted = predict_diff_predicted.cumsum() + train_ts.iloc[-1]

    # 将预测结果保存到DataFrame中
    predict_temp = pd.DataFrame({'sales_region_code': [predict_data.iloc[i, 0]], 'item_code': [predict_data.iloc[i, 1]],
                                 'first_cate_code': [predict_data.iloc[i, 2]], 'second_cate_code': [predict_data.iloc[i, 3]],
                                 '2019年1月预测需求量': predict_predicted.loc['2019-01-01':'2019-01-31'].sum(),
                                 '2019年2月预测需求量': predict_predicted.loc['2019-02-01':'2019-02-28'].sum(),
                                 '2019年3月预测需求量': predict_predicted.loc['2019-03-01':'2019-03-31'].sum()})
    predict = pd.concat([predict, predict_temp], ignore_index=True)

# 将预测结果保存到Excel文件中
predict.to_excel('result1.xlsx', index=False)
目录
相关文章
|
2月前
|
运维 监控 算法
时间序列异常检测:MSET-SPRT组合方法的原理和Python代码实现
MSET-SPRT是一种结合多元状态估计技术(MSET)与序贯概率比检验(SPRT)的混合框架,专为高维度、强关联数据流的异常检测设计。MSET通过历史数据建模估计系统预期状态,SPRT基于统计推断判定偏差显著性,二者协同实现精准高效的异常识别。本文以Python为例,展示其在模拟数据中的应用,证明其在工业监控、设备健康管理及网络安全等领域的可靠性与有效性。
613 13
时间序列异常检测:MSET-SPRT组合方法的原理和Python代码实现
|
2月前
|
SQL 自然语言处理 数据库
【Azure Developer】分享两段Python代码处理表格(CSV格式)数据 : 根据每列的内容生成SQL语句
本文介绍了使用Python Pandas处理数据收集任务中格式不统一的问题。针对两种情况:服务名对应多人拥有状态(1/0表示),以及服务名与人名重复列的情况,分别采用双层for循环和字典数据结构实现数据转换,最终生成Name对应的Services列表(逗号分隔)。此方法高效解决大量数据的人工处理难题,减少错误并提升效率。文中附带代码示例及执行结果截图,便于理解和实践。
|
2月前
|
SQL 人工智能 算法
TDengine 发布时序数据分析 AI 智能体 TDgpt,核心代码开源
2025 年 3 月 26 日,涛思数据通过线上直播形式正式发布了其新一代时序数据分析 AI 智能体——TDgpt,并同步开源其核心代码(GitHub 地址:https://github.com/taosdata/TDengine)。这一创新功能作为 TDengine 3.3.6.0 的重要组成部分,标志着时序数据库在原生集成 AI 能力方面迈出了关键一步。
102 0
|
4月前
|
数据采集 数据可视化 数据挖掘
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析
本文探讨了金融资产波动率建模中的三种主流方法:GARCH、GJR-GARCH和HAR模型,基于SPY的实际交易数据进行实证分析。GARCH模型捕捉波动率聚类特征,GJR-GARCH引入杠杆效应,HAR整合多时间尺度波动率信息。通过Python实现模型估计与性能比较,展示了各模型在风险管理、衍生品定价等领域的应用优势。
612 66
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析
|
24天前
|
开发框架 Java .NET
Python中main函数:代码结构的基石
在Python中,`main`函数是程序结构化和模块化的重要组成部分。它实现了脚本执行与模块导入的分离,避免全局作用域污染并提升代码复用性。其核心作用包括:标准化程序入口、保障模块复用及支持测试驱动开发(TDD)。根据项目复杂度,`main`函数有基础版、函数封装版、参数解析版和类封装版四种典型写法。 与其他语言相比,Python的`main`机制更灵活,支持同一文件作为脚本运行或模块导入。进阶技巧涵盖多文件项目管理、命令行参数处理、环境变量配置及日志集成等。此外,还需注意常见错误如全局变量污染和循环导入,并通过延迟加载、多进程支持和类型提示优化性能。
90 0
|
3月前
|
数据采集 供应链 API
实战指南:通过1688开放平台API获取商品详情数据(附Python代码及避坑指南)
1688作为国内最大的B2B供应链平台,其API为企业提供合法合规的JSON数据源,直接获取批发价、SKU库存等核心数据。相比爬虫方案,官方API避免了反爬严格、数据缺失和法律风险等问题。企业接入1688商品API需完成资质认证、创建应用、签名机制解析及调用接口四步。应用场景包括智能采购系统、供应商评估模型和跨境选品分析。提供高频问题解决方案及安全合规实践,确保数据安全与合法使用。立即访问1688开放平台,解锁B2B数据宝藏!
|
3月前
|
API 开发工具 Python
【Azure Developer】编写Python SDK代码实现从China Azure中VM Disk中创建磁盘快照Snapshot
本文介绍如何使用Python SDK为中国区微软云(China Azure)中的虚拟机磁盘创建快照。通过Azure Python SDK的Snapshot Class,指定`location`和`creation_data`参数,使用`Copy`选项从现有磁盘创建快照。代码示例展示了如何配置Default Azure Credential,并设置特定于中国区Azure的`base_url`和`credential_scopes`。参考资料包括官方文档和相关API说明。
|
4月前
|
存储 缓存 Java
Python高性能编程:五种核心优化技术的原理与Python代码
Python在高性能应用场景中常因执行速度不及C、C++等编译型语言而受质疑,但通过合理利用标准库的优化特性,如`__slots__`机制、列表推导式、`@lru_cache`装饰器和生成器等,可以显著提升代码效率。本文详细介绍了这些实用的性能优化技术,帮助开发者在不牺牲代码质量的前提下提高程序性能。实验数据表明,这些优化方法能在内存使用和计算效率方面带来显著改进,适用于大规模数据处理、递归计算等场景。
116 5
Python高性能编程:五种核心优化技术的原理与Python代码
|
5月前
|
Python
课程设计项目之基于Python实现围棋游戏代码
游戏进去默认为九路玩法,当然也可以选择十三路或是十九路玩法 使用pycharam打开项目,pip安装模块并引用,然后运行即可, 代码每行都有详细的注释,可以做课程设计或者毕业设计项目参考
116 33
|
5月前
|
JavaScript API C#
【Azure Developer】Python代码调用Graph API将外部用户添加到组,结果无效,也无错误信息
根据Graph API文档,在单个请求中将多个成员添加到组时,Python代码示例中的`members@odata.bind`被错误写为`members@odata_bind`,导致用户未成功添加。
77 10

热门文章

最新文章