SQL Server聚类数据挖掘信用卡客户可视化分析

本文涉及的产品
RDS SQL Server Serverless,2-4RCU 50GB 3个月
推荐场景:
云数据库 RDS SQL Server,基础系列 2核4GB
简介: SQL Server聚类数据挖掘信用卡客户可视化分析

全文链接:http://tecdat.cn/?p=30925


近年来商业银行利用先进数据挖掘技术对信用卡客户进行分类,区分不同的客户群体,然后针对不同客户群体,采取不同的发卡方式,营销策略,风险控制措施点击文末“阅读原文”获取完整代码数据


这些举动都是十分有必要的,也是对信用卡产品获得市场份额有巨大帮助作用的。

在信用卡分析时,我们向客户演示了用SQL Server的数据挖掘算法可以提供的内容。

查看数据

查看信用卡资料库:

5WK0L2{TN]N}R(Y42LG2JTI.png

变量信息:

AVB(IUG%RDB{IBV%NGI7PO6.png

导入数据库

数据导入数据库中。

CF147)AG6U[{6KTTKKN3Z)W.png

R$5YG9`IVZQC0OJE{R2L`%G.png

0(ICHAYNQ]9QA72P3HK`TFP.png

`IXZ)YGP[0~@1$JH_)FS]OP.png

数据挖掘

(1) 打开visual studio ,新建项目,选择商业智能项目,analysis services项目

`]$%FXOLZ{4K7_RPV)UGJIU.png

(2) 在解决方案资源管理器中,右键单击数据源,选择新建数据源

(3)数据源名称保持默认,完成

选择聚类,继续下一步

~KDI794$0SY[4ZV05WKE(ZE.png

相关视频

JA8Q)`S]R5JCMGA8W)OCG_5.png

关闭处理窗口后,就可在挖掘模型查看器看到系统经过分析得出的结果和文件:

SWV%$XU(2U$TVFRX[S3VRHW.png

 从聚类结果可以看到,聚类将所有用户分成了10个信用级别。

WK20EYYM8G)7}5QI4T9VDIF.png

从不同类别的依赖图可以看到,类别10、7、9、5之间具有较强的相关关系。说明这几个类别中的信用级别是类似的。下面可以具体看下每个类别中的各个属性的分布的比例。

`%]6U%)TKQ82CV)G)0E(Y8X.png

从上图可以看到不同类别的呆账比例是不同的。

从结果来看,相对来说,第7、10类别的呆账比例最小的,其他几个类别中呆账比例较高,因此可以认为这些类别中的用户的信用级别较高。同时可以看到这些类别的其他信息,这类用户的月开销较低,大多在10000元以下。同时可以看到,这类用户大多是都是都市用户,较少的城镇用户,说明都市用户的信用等级相对城镇用户的信用等级较高。另一方面,可以看到呆账用户中 ,有大部分是高收入人群,而低收入用户的呆账比例反而较低,可以认为低收入用户的信用等级反而较高。

BR{]2VK97O@[4PE~%Y61_D8.png

从每个类别的倾向程度来看,月开销较低的用户呆账比例较低。从另一方面来看,月收入较低的用户,倾向于是分类10的用户,也就是它们的信用等级较好。同时可以看到,户籍为都市的用户倾向于分类10的用户,而户籍为城镇的用户倾向于其他分类。说明都市用户的信用等级相对较高。同时,可以看到与收入越高的用户,更倾向于非10类别,因此,可以认为,收入越高的用户,越存在信用风险。

相关实践学习
使用SQL语句管理索引
本次实验主要介绍如何在RDS-SQLServer数据库中,使用SQL语句管理索引。
SQL Server on Linux入门教程
SQL Server数据库一直只提供Windows下的版本。2016年微软宣布推出可运行在Linux系统下的SQL Server数据库,该版本目前还是早期预览版本。本课程主要介绍SQLServer On Linux的基本知识。 相关的阿里云产品:云数据库RDS SQL Server版 RDS SQL Server不仅拥有高可用架构和任意时间点的数据恢复功能,强力支撑各种企业应用,同时也包含了微软的License费用,减少额外支出。 了解产品详情: https://www.aliyun.com/product/rds/sqlserver
相关文章
|
1月前
|
SQL 数据可视化 安全
微软SQL Server可视化工具与技巧
微软SQL Server不仅提供了强大的数据库管理功能,还集成了多种可视化工具,帮助用户更直观地理解和管理数据
|
1月前
|
SQL 存储 数据可视化
手机短信SQL分析技巧与方法
在手机短信应用中,SQL分析扮演着至关重要的角色
|
3月前
|
数据采集 资源调度 算法
【数据挖掘】十大算法之K-Means K均值聚类算法
K-Means聚类算法的基本介绍,包括算法步骤、损失函数、优缺点分析以及如何优化和改进算法的方法,还提到了几种改进的K-Means算法,如K-Means++和ISODATA算法。
112 4
|
3月前
|
数据采集 自然语言处理 数据可视化
基于Python的社交媒体评论数据挖掘,使用LDA主题分析、文本聚类算法、情感分析实现
本文介绍了基于Python的社交媒体评论数据挖掘方法,使用LDA主题分析、文本聚类算法和情感分析技术,对数据进行深入分析和可视化,以揭示文本数据中的潜在主题、模式和情感倾向。
162 0
|
3月前
|
前端开发 Java JSON
Struts 2携手AngularJS与React:探索企业级后端与现代前端框架的完美融合之道
【8月更文挑战第31天】随着Web应用复杂性的提升,前端技术日新月异。AngularJS和React作为主流前端框架,凭借强大的数据绑定和组件化能力,显著提升了开发动态及交互式Web应用的效率。同时,Struts 2 以其出色的性能和丰富的功能,成为众多Java开发者构建企业级应用的首选后端框架。本文探讨了如何将 Struts 2 与 AngularJS 和 React 整合,以充分发挥前后端各自优势,构建更强大、灵活的 Web 应用。
58 0
|
3月前
|
SQL 数据采集 数据挖掘
为什么要使用 SQL 函数?详尽分析
【8月更文挑战第31天】
50 0
|
3月前
|
SQL 数据采集 算法
【电商数据分析利器】SQL实战项目大揭秘:手把手教你构建用户行为分析系统,从数据建模到精准营销的全方位指南!
【8月更文挑战第31天】随着电商行业的快速发展,用户行为分析的重要性日益凸显。本实战项目将指导你使用 SQL 构建电商平台用户行为分析系统,涵盖数据建模、采集、处理与分析等环节。文章详细介绍了数据库设计、测试数据插入及多种行为分析方法,如购买频次统计、商品销售排名、用户活跃时间段分析和留存率计算,帮助电商企业深入了解用户行为并优化业务策略。通过这些步骤,你将掌握利用 SQL 进行大数据分析的关键技术。
181 0
|
3月前
|
SQL 数据可视化 数据挖掘
SQL 在数据分析中简直太牛啦!从数据提取到可视化,带你领略强大数据库语言的神奇魅力!
【8月更文挑战第31天】在数据驱动时代,SQL(Structured Query Language)作为强大的数据库查询语言,在数据分析中扮演着关键角色。它不仅能够高效准确地提取所需数据,还能通过丰富的函数和操作符对数据进行清洗与转换,确保其适用于进一步分析。借助 SQL 的聚合、分组及排序功能,用户可以从多角度深入分析数据,为企业决策提供有力支持。尽管 SQL 本身不支持数据可视化,但其查询结果可轻松导出至 Excel、Python、R 等工具中进行可视化处理,帮助用户更直观地理解数据。掌握 SQL 可显著提升数据分析效率,助力挖掘数据价值。
69 0
|
3月前
|
SQL 数据挖掘 BI
【超实用技巧】解锁SQL聚合函数的奥秘:从基础COUNT到高级多表分析,带你轻松玩转数据统计与挖掘的全过程!
【8月更文挑战第31天】SQL聚合函数是进行数据统计分析的强大工具,可轻松计算平均值、求和及查找极值等。本文通过具体示例,展示如何利用这些函数对`sales`表进行统计分析,包括使用`COUNT()`、`SUM()`、`AVG()`、`MIN()`、`MAX()`等函数,并结合`GROUP BY`和`HAVING`子句实现更复杂的数据挖掘需求。通过这些实践,你将学会如何高效地应用SQL聚合函数解决实际问题。
51 0
|
3月前
|
网络协议 NoSQL 网络安全
【Azure 应用服务】由Web App“无法连接数据库”而逐步分析到解析内网地址的办法(SQL和Redis开启private endpoint,只能通过内网访问,无法从公网访问的情况下)
【Azure 应用服务】由Web App“无法连接数据库”而逐步分析到解析内网地址的办法(SQL和Redis开启private endpoint,只能通过内网访问,无法从公网访问的情况下)