实时计算 Flink版产品使用问题之在使用Flink on yarn模式进行内存资源调优时,如何进行优化

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:flink的applcation model模式和sql client可以一起用吗

flink的applcation model模式和sql client可以一起用吗,如何使用呢,如果不能使用,生产环境pre-job和session模式哪个模式会更好



参考答案:

Apache Flink 支持多种部署模式,包括 Application Model、Per-Job 和 Session 模式。Application Model 模式是一种新的部署方式,主要解决了 Per-Job 模式中的一些问题,并且目前 Application 模式已经支持 Yarn 和 K8s 的部署方式。Flink 的 SQL Client 可以处理用 SQL 语言编写的查询语句,这些查询需要嵌入用 Java 或 Scala 编写的程序中。

在生产环境中,选择 Pre-job 还是 Session 模式取决于具体的应用场景和需求。如果你需要长时间运行的任务,并且希望任务在出现问题时能够自动恢复,那么 Pre-job 模式可能更适合你。相反,如果你的任务是短周期的或者对实时性有较高要求,那么 Session 模式可能更为合适。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/586977



问题二:使用flink on yarn的模式,怎么进行内存资源调优呢,如何配置flink内存

使用了三台机器搭建flink on yarn,想在生产环境进行调优,如何设置呢,或者说怎么调优最为合理,配置文件如何去修改,还请社区中有经验的大佬指教



参考答案:

在使用Flink on yarn模式进行内存资源调优时,可以配置Flink的参数来优化内存使用。以下是一些关键参数的配置指导:

  1. JobManager参数:
  • jobmanager.heap.mb:用于设置JobManager的堆内存大小,一般建议不要配置得太大,1-2G足够。
  • jobmanager.rpc.address:指定JobManager的地址。
  • jobmanager.rpc.port:指定JobManager的端口。
  1. TaskManager参数:
  • taskmanager.heap.mb:用于设置TaskManager的堆内存大小,大小应根据任务量进行合理的配置。
  • taskmanager.numberOfTaskSlots:指定TaskManager的slot数量,在yarn模式下会受到yarn.scheduler.maximum-allocation-vcores值的影响。
  • taskmanager.memory.process.size:用于配置Flink TaskManager任务的总内存,Flink框架会根据默认比例划分各个区域的内存,但有时默认划分可能不适应特定需求,因此可能需要手动调整以避免资源浪费。
  1. 资源配置:
  • 提交方式可以选择yarn-per-job,并在使用脚本提交Flink任务时指定资源分配。为任务分配合适的资源是性能调优的第一步,适当增加资源的分配通常与性能提升成正比。确保实现了最优资源配置后,再考虑进一步的性能调优策略。

通过合理配置上述参数,您可以更好地优化Flink on yarn模式下的内存资源使用,从而提高任务执行效率和性能。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/586970



问题三:有没有做Flink CDC 和kettle对比?

有没有大佬做Flink CDC 和kettle对比?各个维度的



参考答案:

Flink CDC和Kettle都是常用的数据同步工具,但它们在处理方式和能力上存在一些主要的区别。

Flink CDC是Apache Flink的一组连接器,主要用于捕获数据库的变更数据,如MySQL、Postgres等。其优势在于支持全量和增量一体化同步,即首先读取数据库中表的历史全量数据,再无缝衔接到读取表的增量数据,为用户提供实时的、一致性的快照。同时,Flink CDC支持分布式架构、支持事务,并且生态友好。然而,Flink CDC 1.x版本在不加锁的情况下可以满足大部分场景,但是牺牲了一定的数据准确性。

相比之下,Kettle是一款开源的ETL工具,可以进行数据的抽取、转换和加载等操作。它支持多种数据库,包括MySQL、Oracle、Microsoft SQL Server等,并且可以通过图形化界面进行任务调度和管理。然而,Kettle在处理大规模数据时可能会遇到性能瓶颈。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/586810



问题四:Flink CDC这个可以打印 但是就是sink不进去?

Flink CDC这个可以打印 但是就是sink不进去?



参考答案:

taskmanager.heap.size 和 jobmanager.heap.size 这两个参数你改改看



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/586809



问题五:请问postgresqlFlink CDC 能直接读取华为的 gaussdb 吗?

请问postgresqlFlink CDC 能直接读取华为的 gaussdb 吗?



参考答案:

不能



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/586808

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
1月前
|
机器学习/深度学习 算法 PyTorch
125_训练加速:FlashAttention集成 - 推导注意力优化的独特内存节省
2025年,大型语言模型的训练面临着前所未有的挑战。随着模型参数量和序列长度的不断增加,传统注意力机制的内存瓶颈问题日益突出。FlashAttention作为一种突破性的注意力算法,通过创新的内存访问模式和计算优化,显著提升了训练效率和内存利用。
|
1月前
|
存储 机器学习/深度学习 PyTorch
119_LLM训练的高效内存管理与优化技术:从ZeRO到Flash Attention
大型语言模型(LLM)的训练面临着前所未有的计算和内存挑战。随着模型规模达到数百亿甚至数千亿参数,高效的内存管理成为训练成功的关键因素之一。2025年,LLM训练的内存优化技术已经取得了显著进展,从ZeRO优化器到Flash Attention等创新技术,为训练超大规模模型提供了可能。
|
4月前
|
缓存 固态存储 Windows
如何让内存发挥到最大效能?全面优化指南,提升电脑运行体验
电脑内存使用不合理会导致卡顿,本文教你如何优化内存性能。检查内存容量与主板支持上限,考虑升级或调整配置;关闭后台程序、管理浏览器标签、结束异常进程以释放内存;设置虚拟内存、调整视觉效果、定期重启提升效率;必要时增加内存条、选择高频内存、更换固态硬盘。避免盲目清理内存和依赖大内存忽视其他硬件瓶颈。只需合理设置,无需额外花钱,就能显著提升电脑速度。
|
4月前
|
存储 人工智能 自然语言处理
AI代理内存消耗过大?9种优化策略对比分析
在AI代理系统中,多代理协作虽能提升整体准确性,但真正决定性能的关键因素之一是**内存管理**。随着对话深度和长度的增加,内存消耗呈指数级增长,主要源于历史上下文、工具调用记录、数据库查询结果等组件的持续积累。本文深入探讨了从基础到高级的九种内存优化技术,涵盖顺序存储、滑动窗口、摘要型内存、基于检索的系统、内存增强变换器、分层优化、图形化记忆网络、压缩整合策略以及类操作系统内存管理。通过统一框架下的代码实现与性能评估,分析了每种技术的适用场景与局限性,为构建高效、可扩展的AI代理系统提供了系统性的优化路径和技术参考。
247 4
AI代理内存消耗过大?9种优化策略对比分析
|
4月前
|
存储 人工智能 API
AI代理性能提升实战:LangChain+LangGraph内存管理与上下文优化完整指南
在AI代理系统开发中,上下文工程成为提升系统性能的关键技术。本文探讨了从提示工程到上下文工程的转变,强调其通过为AI系统提供背景信息和工具支持,显著提升智能化程度和实用价值。文章系统分析了上下文工程的理论基础、核心策略(如写入、选择、压缩和隔离),并结合LangChain和LangGraph工具,展示了如何实现上下文工程技术以优化AI代理性能。通过Scratchpad机制、内存管理、RAG系统集成、多代理架构及沙盒环境等技术手段,开发者可以更高效地构建高性能、可扩展的AI系统。
491 0
AI代理性能提升实战:LangChain+LangGraph内存管理与上下文优化完整指南
|
5月前
|
缓存 监控 Cloud Native
Java Solon v3.2.0 高并发与低内存实战指南之解决方案优化
本文深入解析了Java Solon v3.2.0框架的实战应用,聚焦高并发与低内存消耗场景。通过响应式编程、云原生支持、内存优化等特性,结合API网关、数据库操作及分布式缓存实例,展示其在秒杀系统中的性能优势。文章还提供了Docker部署、监控方案及实际效果数据,助力开发者构建高效稳定的应用系统。代码示例详尽,适合希望提升系统性能的Java开发者参考。
263 4
Java Solon v3.2.0 高并发与低内存实战指南之解决方案优化
|
3月前
|
边缘计算 算法 Java
Java 绿色计算与性能优化:从内存管理到能耗降低的全方位优化策略与实践技巧
本文探讨了Java绿色计算与性能优化的技术方案和应用实例。文章从JVM调优(包括垃圾回收器选择、内存管理和并发优化)、代码优化(数据结构选择、对象创建和I/O操作优化)等方面提出优化策略,并结合电商平台、社交平台和智能工厂的实际案例,展示了通过Java新特性提升性能、降低能耗的显著效果。最终指出,综合运用这些优化方法不仅能提高系统性能,还能实现绿色计算目标,为企业节省成本并符合环保要求。
149 0
|
资源调度 分布式计算 Hadoop
YARN(Hadoop操作系统)的架构
本文详细解释了YARN(Hadoop操作系统)的架构,包括其主要组件如ResourceManager、NodeManager和ApplicationMaster的作用以及它们如何协同工作来管理Hadoop集群中的资源和调度作业。
688 3
YARN(Hadoop操作系统)的架构
|
资源调度 分布式计算 Hadoop
使用YARN命令管理Hadoop作业
本文介绍了如何使用YARN命令来管理Hadoop作业,包括查看作业列表、检查作业状态、杀死作业、获取作业日志以及检查节点和队列状态等操作。
449 1
使用YARN命令管理Hadoop作业
|
资源调度 分布式计算 算法
【揭秘Yarn调度秘籍】打破资源分配的枷锁,Hadoop Yarn权重调度全攻略!
【8月更文挑战第24天】在大数据处理领域,Hadoop Yarn 是一种关键的作业调度与集群资源管理工具。它支持多种调度器以适应不同需求,默认采用FIFO调度器,但可通过引入基于权重的调度算法来提高资源利用率。该算法根据作业或用户的权重值决定资源分配比例,权重高的可获得更多计算资源,特别适合多用户共享环境。管理员需在Yarn配置文件中启用特定调度器(如CapacityScheduler),并通过设置队列权重来实现资源的动态调整。合理配置权重有助于避免资源浪费,确保集群高效运行,满足不同用户需求。
249 3

相关产品

  • 实时计算 Flink版