Transformers 4.37 中文文档(五十七)(4)

简介: Transformers 4.37 中文文档(五十七)

Transformers 4.37 中文文档(五十七)(3)https://developer.aliyun.com/article/1565333


RoFormerTokenizer

class transformers.RoFormerTokenizer

< source >

( vocab_file do_lower_case = True do_basic_tokenize = True never_split = None unk_token = '[UNK]' sep_token = '[SEP]' pad_token = '[PAD]' cls_token = '[CLS]' mask_token = '[MASK]' tokenize_chinese_chars = True strip_accents = None **kwargs )

参数

  • vocab_file (str) — 包含词汇表的文件。
  • do_lower_case (bool, optional, 默认为 True) — 在标记化时是否将输入转换为小写。
  • do_basic_tokenize (bool, optional, 默认为 True) — 在 WordPiece 之前是否进行基本标记化。
  • never_split (Iterable, optional) — 在标记化过程中永远不会拆分的标记集合。仅在 do_basic_tokenize=True 时有效。
  • unk_token (str, optional, 默认为 "[UNK]") — 未知标记。词汇表中不存在的标记无法转换为 ID,而是设置为此标记。
  • sep_token (str, optional, 默认为 "[SEP]") — 分隔符标记,在构建来自多个序列的序列时使用,例如用于序列分类的两个序列或用于问题回答的文本和问题。它还用作由特殊标记构建的序列的最后一个标记。
  • pad_token (str, optional, 默认为 "[PAD]") — 用于填充的标记,例如在批处理不同长度的序列时使用。
  • cls_token (str, optional, 默认为 "[CLS]") — 分类器标记,用于进行序列分类(对整个序列进行分类,而不是每个标记的分类)。它是使用特殊标记构建的序列的第一个标记。
  • mask_token (str, optional, defaults to "[MASK]") — 用于屏蔽值的标记。这是在使用屏蔽语言建模训练此模型时使用的标记。这是模型将尝试预测的标记。
  • tokenize_chinese_chars (bool, optional, defaults to True) — 是否对中文字符进行分词。
    这可能应该在日语中停用(请参阅此问题)。
  • strip_accents (bool, optional) — 是否去除所有重音符号。如果未指定此选项,则将由 lowercase 的值确定(与原始 BERT 相同)。

构建一个 RoFormer 分词器。基于Rust Jieba

此分词器继承自 PreTrainedTokenizer,其中包含大部分主要方法。用户应参考此超类以获取有关这些方法的更多信息。

示例:

>>> from transformers import RoFormerTokenizer
>>> tokenizer = RoFormerTokenizer.from_pretrained("junnyu/roformer_chinese_base")
>>> tokenizer.tokenize("今天天气非常好。")
['今', '天', '天', '气', '非常', '好', '。']
build_inputs_with_special_tokens

<来源>

( token_ids_0: List token_ids_1: Optional = None ) → export const metadata = 'undefined';List[int]

参数

  • token_ids_0 (List[int]) — 将添加特殊标记的 ID 列表。
  • token_ids_1 (List[int], optional) — 序列对的可选第二个 ID 列表。

返回

List[int]

具有适当特殊标记的输入 ID 列表。

通过连接和添加特殊标记,为序列分类任务构建模型输入。RoFormer 序列的格式如下:

  • 单个序列:[CLS] X [SEP]
  • 序列对:[CLS] A [SEP] B [SEP]
get_special_tokens_mask

<来源>

( token_ids_0: List token_ids_1: Optional = None already_has_special_tokens: bool = False ) → export const metadata = 'undefined';List[int]

参数

  • token_ids_0 (List[int]) — ID 列表。
  • token_ids_1 (List[int], optional) — 序列对的可选第二个 ID 列表。
  • already_has_special_tokens (bool, optional, defaults to False) — 是否已经为模型的特殊标记格式化了标记列表。

返回

List[int]

一个整数列表,范围为 [0, 1]:1 表示特殊标记,0 表示序列标记。

从没有添加特殊标记的标记列表中检索序列 ID。当使用分词器的 prepare_for_model 方法添加特殊标记时,将调用此方法。

create_token_type_ids_from_sequences

<来源>

( token_ids_0: List token_ids_1: Optional = None ) → export const metadata = 'undefined';List[int]

参数

  • token_ids_0 (List[int]) — ID 列表。
  • token_ids_1 (List[int], optional) — 序列对的可选第二个 ID 列表。

返回

List[int]

根据给定序列的标记类型 ID 列表。

从传递的两个序列创建一个用于序列对分类任务的掩码。RoFormer

序列对掩码的格式如下:

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence    | second sequence |

如果 token_ids_1None,则此方法仅返回掩码的第一部分(0s)。

save_vocabulary

<来源>

( save_directory: str filename_prefix: Optional = None )

RoFormerTokenizerFast

class transformers.RoFormerTokenizerFast

<来源>

( vocab_file = None tokenizer_file = None do_lower_case = True unk_token = '[UNK]' sep_token = '[SEP]' pad_token = '[PAD]' cls_token = '[CLS]' mask_token = '[MASK]' tokenize_chinese_chars = True strip_accents = None **kwargs )

构建一个“快速”RoFormer 分词器(由 HuggingFace 的tokenizers库支持)。

RoFormerTokenizerFast 几乎与 BertTokenizerFast 相同,并且可以进行端到端的分词:标点符号拆分和词片。在分词中文时它们之间存在一些差异。

此标记器继承自 PreTrainedTokenizerFast,其中包含大多数主要方法。用户应参考此超类以获取有关这些方法的更多信息。

示例:

>>> from transformers import RoFormerTokenizerFast
>>> tokenizer = RoFormerTokenizerFast.from_pretrained("junnyu/roformer_chinese_base")
>>> tokenizer.tokenize("今天天气非常好。")
['今', '天', '天', '气', '非常', '好', '。']
build_inputs_with_special_tokens

<来源>

( token_ids_0 token_ids_1 = None ) → export const metadata = 'undefined';List[int]

参数

  • token_ids_0List[int])- 将添加特殊标记的 ID 列表。
  • token_ids_1List[int]可选)- 序列对的可选第二个 ID 列表。

返回

List[int]

具有适当特殊标记的 input IDs 列表。

通过连接和添加特殊标记,从序列或序列对构建用于序列分类任务的模型输入。RoFormer 序列具有以下格式:

  • 单个序列:[CLS] X [SEP]
  • 序列对:[CLS] A [SEP] B [SEP]

PytorchHide Pytorch 内容

RoFormerModel

class transformers.RoFormerModel

<来源>

( config )

参数

  • config(RoFormerConfig)- 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

裸 RoFormer 模型变压器输出原始隐藏状态,没有特定的头部。此模型是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

该模型可以作为编码器(仅使用自注意力)或解码器运行,在后一种情况下,在自注意力层之间添加了一层交叉注意力,遵循Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser 和 Illia Polosukhin描述的架构。

要作为解码器运行,模型需要使用配置中的is_decoder参数初始化为True。要在 Seq2Seq 模型中使用,模型需要使用is_decoder参数和add_cross_attention设置为True进行初始化;然后预期将encoder_hidden_states作为输入传递。

forward

<来源>

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None encoder_hidden_states: Optional = None encoder_attention_mask: Optional = None past_key_values: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentions or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)torch.LongTensor)- 词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    什么是输入 IDs?
  • attention_masktorch.FloatTensor,形状为(batch_size, sequence_length)可选)- 用于避免在填充标记索引上执行注意力的掩码。选择的掩码值在[0, 1]之间:
  • 1 表示未被掩码的标记,
  • 0 表示被掩码的标记。
  • 什么是注意力掩码?
  • token_type_ids(形状为(batch_size, sequence_length)torch.LongTensor可选)- 段标记索引,指示输入的第一部分和第二部分。索引在[0, 1]中选择:
  • 0 对应于句子 A的标记,
  • 1 对应于句子 B的标记。
  • 什么是 token type IDs?
  • head_mask(形状为(num_heads,)(num_layers, num_heads)torch.FloatTensor可选)— 用于使自注意力模块的选定头部失效的掩码。掩码值选在[0, 1]之间:
  • 1 表示头部未被掩盖,
  • 0 表示头部被掩盖。
  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor可选)— 可选地,您可以选择直接传递嵌入表示而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • output_attentionsbool可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_statesbool可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dictbool可选)— 是否返回一个 ModelOutput 而不是一个普通的元组。
  • encoder_hidden_states(形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor可选)— 编码器最后一层的隐藏状态序列。如果模型配置为解码器,则用于交叉注意力。
  • encoder_attention_mask(形状为(batch_size, sequence_length)torch.FloatTensor可选)— 用于避免在编码器输入的填充标记索引上执行注意力的掩码。如果模型配置为解码器,则在交叉注意力中使用此掩码。掩码值选在[0, 1]之间:
  • 1 表示未被掩盖的标记,
  • 0 表示被掩盖的标记。
  • past_key_values(长度为config.n_layerstuple(tuple(torch.FloatTensor)),每个元组包含形状为(batch_size, num_heads, sequence_length - 1, embed_size_per_head)的 4 个张量)— 包含注意力块的预计算键和值隐藏状态。可用于加速解码。如果使用past_key_values,用户可以选择仅输入形状为(batch_size, 1)的最后一个decoder_input_ids(这些输入没有给定其过去键值状态的模型)而不是形状为(batch_size, sequence_length)的所有decoder_input_ids
  • use_cachebool可选)— 如果设置为True,则返回past_key_values键值状态,可用于加速解码(参见past_key_values)。

返回

transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentionstuple(torch.FloatTensor)

一个 transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentions 或一个torch.FloatTensor元组(如果传递了return_dict=Falseconfig.return_dict=False时)包含各种元素,这取决于配置(RoFormerConfig)和输入。

  • last_hidden_state(形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor)— 模型最后一层的隐藏状态序列。
    如果使用past_key_values,则只输出形状为(batch_size, 1, hidden_size)的序列的最后一个隐藏状态。
  • past_key_valuestuple(tuple(torch.FloatTensor))可选,当传递use_cache=Trueconfig.use_cache=True时返回)— 长度为config.n_layerstuple(torch.FloatTensor)元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)的张量,如果config.is_encoder_decoder=True还有 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)的张量。
    包含预先计算的隐藏状态(自注意力块中的键和值,以及如果config.is_encoder_decoder=True在交叉注意力块中)可以用来加速顺序解码的(见past_key_values输入)。
  • hidden_statestuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)— 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(一个用于嵌入的输出,如果模型有嵌入层,+ 一个用于每个层的输出)。
    每层模型的隐藏状态加上可选的初始嵌入输出。
  • attentionstuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。
    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
  • cross_attentionstuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.add_cross_attention=Trueconfig.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。
    解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。

RoFormerModel 的前向方法,覆盖了__call__特殊方法。

尽管前向传播的配方需要在这个函数内定义,但应该在此之后调用Module实例,而不是这个函数,因为前者负责运行前处理和后处理步骤,而后者则默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, RoFormerModel
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
>>> model = RoFormerModel.from_pretrained("junnyu/roformer_chinese_base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state

RoFormerForCausalLM

class transformers.RoFormerForCausalLM

<来源>

( config )

参数

  • config(RoFormerConfig)— 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

RoFormer 模型在顶部带有语言建模头用于 CLM 微调。这个模型是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

前进

<来源>

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None inputs_embeds: Optional = None encoder_hidden_states: Optional = None encoder_attention_mask: Optional = None head_mask: Optional = None cross_attn_head_mask: Optional = None past_key_values: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.CausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)torch.LongTensor)— 词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参见 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选在 [0, 1] 之间:
  • 1 表示未被 masked 的标记,
  • 0 表示被 masked 的标记。
  • 什么是注意力掩码?
  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — 段标记索引,指示输入的第一部分和第二部分。索引选在 [0, 1] 之间:
  • 0 对应于 句子 A 标记,
  • 1 对应于 句子 B 标记。
  • 什么是标记类型 ID?
  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — 用于使自注意力模块的选定头部失效的掩码。掩码值选在 [0, 1] 之间:
  • 1 表示头部未被 masked
  • 0 表示头部被 masked
  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以直接传递嵌入表示,而不是传递 input_ids。如果您想要更多控制如何将 input_ids 索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的 attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量中的 hidden_states
  • return_dict (bool, optional) — 是否返回一个 ModelOutput 而不是一个普通的元组。
  • encoder_hidden_states (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 编码器最后一层的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。
  • encoder_attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — 用于避免在编码器输入的填充标记索引上执行注意力的掩码。如果模型配置为解码器,则在交叉注意力中使用此掩码。掩码值选在 [0, 1] 之间:
  • 1 表示未被 masked 的标记,
  • 0 表示被 masked 的标记。
  • past_key_values (tuple(tuple(torch.FloatTensor)),长度为 config.n_layers,每个元组包含 4 个形状为 (batch_size, num_heads, sequence_length - 1, embed_size_per_head) 的张量) — 包含注意力块的预计算键和值隐藏状态。可用于加速解码。如果使用了 past_key_values,用户可以选择仅输入最后一个 decoder_input_ids(这些没有将其过去的键值状态提供给此模型的)的形状为 (batch_size, 1),而不是形状为 (batch_size, sequence_length) 的所有 decoder_input_ids
  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) — 用于计算从左到右的语言建模损失(下一个单词预测)的标签。索引应在 [-100, 0, ..., config.vocab_size] 中(参见 input_ids 文档字符串)。索引设置为 -100 的标记将被忽略(被 masked),损失仅计算具有标签 n [0, ..., config.vocab_size] 的标记。
  • use_cachebool可选) — 如果设置为True,则返回past_key_values键值状态,可用于加速解码(参见past_key_values)。

返回

transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或者tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或者一个torch.FloatTensor元组(如果传递了return_dict=False或者config.return_dict=False)包含各种元素,取决于配置(RoFormerConfig)和输入。

  • loss(形状为(1,)torch.FloatTensor可选,当提供labels时返回) — 语言建模损失(用于下一个标记预测)。
  • logits(形状为(batch_size, sequence_length, config.vocab_size)torch.FloatTensor) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。
  • hidden_statestuple(torch.FloatTensor)可选,当传递output_hidden_states=True或者config.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型有嵌入层,则为嵌入的输出+每个层的输出)。
    模型在每一层输出的隐藏状态加上可选的初始嵌入输出。
  • attentionstuple(torch.FloatTensor)可选,当传递output_attentions=True或者config.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。
    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
  • cross_attentionstuple(torch.FloatTensor)可选,当传递output_attentions=True或者config.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。
    在注意力 softmax 之后的交叉注意力权重,用于计算交叉注意力头中的加权平均值。
  • past_key_valuestuple(tuple(torch.FloatTensor))可选,当传递use_cache=True或者config.use_cache=True时返回) — 长度为config.n_layerstorch.FloatTensor元组的元组,每个元组包含自注意力和交叉注意力层的缓存键、值状态,如果模型用于编码器-解码器设置,则相关。仅在config.is_decoder = True时相关。
    包含预先计算的隐藏状态(注意力块中的键和值),可以用于加速顺序解码(参见past_key_values输入)。

RoFormerForCausalLM 的前向方法,覆盖__call__特殊方法。

虽然前向传递的方法需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, RoFormerForCausalLM, RoFormerConfig
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
>>> config = RoFormerConfig.from_pretrained("junnyu/roformer_chinese_base")
>>> config.is_decoder = True
>>> model = RoFormerForCausalLM.from_pretrained("junnyu/roformer_chinese_base", config=config)
>>> inputs = tokenizer("今天天气非常好。", return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.logits

RoFormerForMaskedLM

transformers.RoFormerForMaskedLM

< source >

( config )

参数

  • config(RoFormerConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

RoFormer 模型在顶部带有一个语言建模头。该模型是 PyTorch torch.nn.Module子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

<来源>

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None encoder_hidden_states: Optional = None encoder_attention_mask: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.MaskedLMOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)torch.LongTensor)— 词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参见 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • attention_mask(形状为(batch_size, sequence_length)torch.FloatTensor可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]之间:
  • 1 用于未被掩码的标记,
  • 0 用于被掩码的标记。
  • 注意力掩码是什么?
  • token_type_ids(形状为(batch_size, sequence_length)torch.LongTensor可选)— 段标记索引,指示输入的第一部分和第二部分。索引选择在[0, 1]内:
  • 0 对应于句子 A的标记,
  • 1 对应于句子 B的标记。
  • 什么是标记类型 ID?
  • head_mask(形状为(num_heads,)(num_layers, num_heads)torch.FloatTensor可选)— 用于使自注意力模块中选择的头部失效的掩码。掩码值选择在[0, 1]之间:
  • 1 表示头部未被掩码,
  • 0 表示头部被掩码。
  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor可选)— 可选地,您可以选择直接传递嵌入表示而不是传递input_ids。如果您希望更多地控制如何将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。
  • output_attentionsbool可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
  • output_hidden_statesbool可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量中的hidden_states
  • return_dictbool可选)— 是否返回一个 ModelOutput 而不是一个普通元组。
  • labels(形状为(batch_size, sequence_length)torch.LongTensor可选)— 用于计算掩码语言建模损失的标签。索引应在[-100, 0, ..., config.vocab_size]内(请参见input_ids文档字符串)。索引设置为-100的标记将被忽略(被掩码),损失仅计算具有标签在[0, ..., config.vocab_size]内的标记。

返回

transformers.modeling_outputs.MaskedLMOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.MaskedLMOutput 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False)包含各种元素,取决于配置(RoFormerConfig)和输入。

  • loss(形状为(1,)torch.FloatTensor可选,当提供labels时返回)— 掩码语言建模(MLM)损失。
  • logits(形状为(batch_size, sequence_length, config.vocab_size)torch.FloatTensor)— 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。
  • hidden_statestuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)— 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型有嵌入层,则为嵌入输出的输出+每层的输出)。
    模型在每一层的输出的隐藏状态以及可选的初始嵌入输出。
  • attentionstuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。
    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

RoFormerForMaskedLM 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, RoFormerForMaskedLM
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
>>> model = RoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base")
>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="pt")
>>> with torch.no_grad():
...     logits = model(**inputs).logits
>>> # retrieve index of [MASK]
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]
>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
>>> # mask labels of non-[MASK] tokens
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)
>>> outputs = model(**inputs, labels=labels)


Transformers 4.37 中文文档(五十七)(5)https://developer.aliyun.com/article/1565338

相关文章
|
3月前
|
PyTorch 算法框架/工具 异构计算
Transformers 4.37 中文文档(五十七)(8)
Transformers 4.37 中文文档(五十七)
16 0
|
3月前
|
存储 自然语言处理 PyTorch
Transformers 4.37 中文文档(五十七)(1)
Transformers 4.37 中文文档(五十七)
15 0
|
3月前
|
存储 自然语言处理 PyTorch
Transformers 4.37 中文文档(五十七)(3)
Transformers 4.37 中文文档(五十七)
16 0
|
3月前
|
缓存 PyTorch 算法框架/工具
Transformers 4.37 中文文档(五十七)(2)
Transformers 4.37 中文文档(五十七)
15 0
|
3月前
|
PyTorch TensorFlow 算法框架/工具
Transformers 4.37 中文文档(五十七)(7)
Transformers 4.37 中文文档(五十七)
17 0
|
3月前
|
PyTorch TensorFlow API
Transformers 4.37 中文文档(五十七)(6)
Transformers 4.37 中文文档(五十七)
21 0
|
3月前
|
自然语言处理 PyTorch TensorFlow
Transformers 4.37 中文文档(五十七)(5)
Transformers 4.37 中文文档(五十七)
18 0
|
3月前
|
PyTorch TensorFlow 算法框架/工具
Transformers 4.37 中文文档(六十二)(4)
Transformers 4.37 中文文档(六十二)
20 0
|
3月前
|
机器学习/深度学习 存储 PyTorch
Transformers 4.37 中文文档(六十二)(1)
Transformers 4.37 中文文档(六十二)
15 0
|
3月前
|
缓存 自然语言处理 PyTorch
Transformers 4.37 中文文档(六十二)(5)
Transformers 4.37 中文文档(六十二)
15 0