Transformers 4.37 中文文档(六十二)(3)https://developer.aliyun.com/article/1564098
TFXLMRobertaForCausalLM
class transformers.TFXLMRobertaForCausalLM
( config: XLMRobertaConfig *inputs **kwargs )
参数
config
(XLMRobertaConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。
XLM-RoBERTa 模型,在顶部带有用于 CLM 微调的语言建模
头。
此模型继承自 TFPreTrainedModel。检查超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。
此模型也是tf.keras.Model的子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取与一般用法和行为相关的所有内容。
transformers
中的 TensorFlow 模型和层接受两种格式的输入:
- 将所有输入作为关键字参数(类似于 PyTorch 模型),或
- 将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是,当将输入传递给模型和层时,Keras 方法更喜欢这种格式。由于这种支持,当使用诸如model.fit()
之类的方法时,您应该可以“轻松地”使用 - 只需以model.fit()
支持的任何格式传递您的输入和标签即可!但是,如果您想在 Keras 方法之外使用第二种格式,比如在使用 Keras Functional
API 创建自己的层或模型时,有三种可能性可以用来收集所有输入张量在第一个位置参数中:
- 只有一个包含
input_ids
的张量,没有其他内容:model(input_ids)
- 一个长度不同的列表,其中包含一个或多个输入张量,按照文档字符串中给定的顺序:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个字典,其中包含一个或多个与文档字符串中给定的输入名称相关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用子类化创建模型和层时,您无需担心任何这些,因为您可以像将输入传递给任何其他 Python 函数一样传递输入!
call
( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None encoder_hidden_states: np.ndarray | tf.Tensor | None = None encoder_attention_mask: np.ndarray | tf.Tensor | None = None past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFCausalLMOutputWithCrossAttentions or tuple(tf.Tensor)
参数
input_ids
(形状为(batch_size, sequence_length)
的Numpy 数组
或tf.Tensor
) — 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call
()和 PreTrainedTokenizer.encode()。什么是输入 ID?attention_mask
(Numpy array
或tf.Tensor
,形状为(batch_size, sequence_length)
,optional) — 用于避免在填充标记索引上执行注意力的掩码。掩码值在[0, 1]
中选择:
- 1 表示未被屏蔽的标记,
- 0 表示被屏蔽的标记。什么是注意力掩码?
token_type_ids
(Numpy array
或tf.Tensor
,形状为(batch_size, sequence_length)
,optional) — 分段标记索引,用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:
- 0 对应于 句子 A 标记。
- 1 对应于 句子 B 标记。什么是标记类型 ID?
position_ids
(Numpy array
或tf.Tensor
,形状为(batch_size, sequence_length)
,optional) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。什么是位置 ID?head_mask
(Numpy array
或tf.Tensor
,形状为(num_heads,)
或(num_layers, num_heads)
,optional) — 用于使自注意力模块中选择的头部失效的掩码。掩码值在[0, 1]
中选择:
- 1 表示头部未被屏蔽,
- 0 表示头部被屏蔽。
inputs_embeds
(tf.Tensor
,形状为(batch_size, sequence_length, hidden_size)
,optional) — 可选地,可以直接传递嵌入表示,而不是传递input_ids
。如果您想要更多控制如何将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。output_attentions
(bool
, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回的张量中的attentions
。这个参数只能在急切模式下使用,在图模式下将使用配置中的值。output_hidden_states
(bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回的张量中的hidden_states
。这个参数只能在急切模式下使用,在图模式下将使用配置中的值。return_dict
(bool
, optional) — 是否返回一个 ModelOutput 而不是一个普通的元组。这个参数可以在急切模式下使用,在图模式下该值将始终设置为 True。training
(bool
, optional, 默认为False
) — 是否在训练模式下使用模型(一些模块,如 dropout 模块,在训练和评估之间有不同的行为)。encoder_hidden_states
(tf.Tensor
,形状为(batch_size, sequence_length, hidden_size)
,optional) — 编码器最后一层的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。encoder_attention_mask
(tf.Tensor
,形状为(batch_size, sequence_length)
,optional) — 用于避免在编码器输入的填充标记索引上执行注意力的掩码。如果模型配置为解码器,则在交叉注意力中使用。掩码值在[0, 1]
中选择:
- 1 表示未被屏蔽的标记,
- 0 表示被屏蔽的标记。
past_key_values
(Tuple[Tuple[tf.Tensor]]
,长度为config.n_layers
) — 包含注意力块的预计算键和值隐藏状态。可用于加速解码。如果使用了past_key_values
,用户可以选择仅输入最后一个decoder_input_ids
(这些没有将它们的过去键值状态提供给此模型的输入)的形状为(batch_size, 1)
,而不是所有decoder_input_ids
的形状为(batch_size, sequence_length)
。use_cache
(bool
, optional, 默认为True
) — 如果设置为True
,则会返回past_key_values
键值状态,可用于加速解码(参见past_key_values
)。在训练期间设置为False
,在生成期间设置为True
。labels
(形状为(batch_size, sequence_length)
的tf.Tensor
或np.ndarray
,可选)— 用于计算交叉熵分类损失的标签。索引应在[0, ..., config.vocab_size - 1]
范围内。
返回
transformers.modeling_tf_outputs.TFCausalLMOutputWithCrossAttentions 或tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFCausalLMOutputWithCrossAttentions 或一个tf.Tensor
元组(如果传递return_dict=False
或config.return_dict=False
)包含根据配置(XLMRobertaConfig)和输入的不同元素。
loss
(形状为(n,)
的tf.Tensor
,可选,其中 n 是非掩码标签的数量,在提供labels
时返回)— 语言建模损失(用于下一个标记预测)。logits
(形状为(batch_size, sequence_length, config.vocab_size)
的tf.Tensor
)— 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。hidden_states
(tuple(tf.Tensor)
,可选,在传递output_hidden_states=True
或config.output_hidden_states=True
时返回)— 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入的输出,一个用于每一层的输出)。
模型在每一层输出的隐藏状态加上初始嵌入输出。attentions
(tuple(tf.Tensor)
,可选,在传递output_attentions=True
或config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每层一个)。
注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。cross_attentions
(tuple(tf.Tensor)
,可选,在传递output_attentions=True
或config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每层一个)。
解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。past_key_values
(List[tf.Tensor]
,可选,在传递use_cache=True
或config.use_cache=True
时返回)— 长度为config.n_layers
的tf.Tensor
列表,每个张量的形状为(2, batch_size, num_heads, sequence_length, embed_size_per_head)
。
包含预先计算的隐藏状态(注意力块中的键和值),可用于加速顺序解码(请参见past_key_values
输入)。
TFXLMRobertaForCausalLM 的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的配方需要在此函数内定义,但应该在此之后调用Module
实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。
例如:
>>> from transformers import AutoTokenizer, TFXLMRobertaForCausalLM >>> import tensorflow as tf >>> tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base") >>> model = TFXLMRobertaForCausalLM.from_pretrained("xlm-roberta-base") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf") >>> outputs = model(inputs) >>> logits = outputs.logits
TFXLMRobertaForMaskedLM
class transformers.TFXLMRobertaForMaskedLM
( config *inputs **kwargs )
参数
config
(XLMRobertaConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
XLM RoBERTa 模型,顶部带有语言建模
头。
此模型继承自 TFPreTrainedModel。检查超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。
此模型也是tf.keras.Model的子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取有关一般用法和行为的所有相关信息。
TensorFlow 模型和层在transformers
中接受两种格式的输入:
- 将所有输入作为关键字参数(类似于 PyTorch 模型),或
- 将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是,Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于有了这种支持,在使用诸如model.fit()
之类的方法时,应该会“正常工作” - 只需传递model.fit()
支持的任何格式的输入和标签!但是,如果您想在 Keras 方法之外使用第二种格式,例如在使用 KerasFunctional
API 创建自己的层或模型时,有三种可能性可以用来收集第一个位置参数中的所有输入张量:
- 只有
input_ids
的单个张量,没有其他内容:model(input_ids)
- 一个长度可变的列表,其中包含一个或多个输入张量,按照文档字符串中给定的顺序:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个字典,其中包含与文档字符串中给定的输入名称相关联的一个或多个输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
注意,当使用子类化创建模型和层时,您无需担心任何问题,因为您可以像对待任何其他 Python 函数一样传递输入!
call
( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFMaskedLMOutput or tuple(tf.Tensor)
参数
input_ids
(形状为(batch_size, sequence_length)
的Numpy
数组或tf.Tensor
)- 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call
()和 PreTrainedTokenizer.encode()。什么是输入 ID?attention_mask
(形状为(batch_size, sequence_length)
的Numpy
数组或tf.Tensor
,可选)- 避免在填充标记索引上执行注意力的掩码。掩码值在[0, 1]
中选择:
- 对于
未被掩码
的标记为 1, - 对于
被掩码
的标记为 0。什么是注意力掩码?
token_type_ids
(形状为(batch_size, sequence_length)
的Numpy
数组或tf.Tensor
,可选)- 指示输入的第一部分和第二部分的段标记索引。索引在[0, 1]
中选择:
- 0 对应于句子 A标记,
- 1 对应于句子 B标记。什么是标记类型 ID?
position_ids
(形状为(batch_size, sequence_length)
的Numpy
数组或tf.Tensor
,可选)- 每个输入序列标记在位置嵌入中的位置的索引。在范围[0, config.max_position_embeddings - 1]
中选择。什么是位置 ID?head_mask
(Numpy 数组
或tf.Tensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于使自注意力模块中的选定头部失效的掩码。选择的掩码值在[0, 1]
中:
- 1 表示头部未被
掩码
, - 0 表示头部被
掩码
。
inputs_embeds
(tf.Tensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,您可以直接传递嵌入表示,而不是传递input_ids
。如果您想要更多控制如何将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。output_attentions
(bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。此参数仅在急切模式下可用,在图模式下将使用配置中的值。output_hidden_states
(bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。此参数仅在急切模式下可用,在图模式下将使用配置中的值。return_dict
(bool
,可选) — 是否返回一个 ModelOutput 而不是一个普通元组。此参数可在急切模式下使用,在图模式下该值将始终设置为 True。training
(bool
,可选,默认为False
) — 是否在训练模式下使用模型(一些模块,如丢弃模块,在训练和评估之间具有不同的行为)。labels
(tf.Tensor
,形状为(batch_size, sequence_length)
,可选) — 用于计算掩码语言建模损失的标签。索引应在[-100, 0, ..., config.vocab_size]
中(请参阅input_ids
文档字符串)。索引设置为-100
的标记将被忽略(掩码),仅对标签在[0, ..., config.vocab_size]
中的标记计算损失。
返回
transformers.modeling_tf_outputs.TFMaskedLMOutput 或 tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFMaskedLMOutput 或一个 tf.Tensor
元组(如果传递 return_dict=False
或 config.return_dict=False
时)包含各种元素,这取决于配置(XLMRobertaConfig)和输入。
loss
(tf.Tensor
,形状为(n,)
,可选,当提供labels
时返回,其中 n 是非屏蔽标签的数量) — 掩码语言建模(MLM)损失。logits
(tf.Tensor
,形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头部的预测分数(SoftMax 前每个词汇标记的分数)。hidden_states
(tuple(tf.Tensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每个层的输出)。
每层模型的隐藏状态加上初始嵌入输出。attentions
(tuple(tf.Tensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每个层一个)。
在注意力 softmax 之后的注意力权重,用于计算自注意力头部中的加权平均值。
TFXLMRobertaForMaskedLM 的前向方法,覆盖了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但应该在此之后调用Module
实例,而不是调用此函数,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, TFXLMRobertaForMaskedLM >>> import tensorflow as tf >>> tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base") >>> model = TFXLMRobertaForMaskedLM.from_pretrained("xlm-roberta-base") >>> inputs = tokenizer("The capital of France is <mask>.", return_tensors="tf") >>> logits = model(**inputs).logits >>> # retrieve index of <mask> >>> mask_token_index = tf.where((inputs.input_ids == tokenizer.mask_token_id)[0]) >>> selected_logits = tf.gather_nd(logits[0], indices=mask_token_index) >>> predicted_token_id = tf.math.argmax(selected_logits, axis=-1) >>> tokenizer.decode(predicted_token_id) ' Paris'
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="tf")["input_ids"] >>> # mask labels of non-<mask> tokens >>> labels = tf.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100) >>> outputs = model(**inputs, labels=labels) >>> round(float(outputs.loss), 2) 0.1
TFXLMRobertaForSequenceClassification
class transformers.TFXLMRobertaForSequenceClassification
( config *inputs **kwargs )
参数
config
(XLMRobertaConfig)- 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
带有顶部的序列分类/回归头(池化输出顶部的线性层)的 XLM RoBERTa 模型变换器,例如用于 GLUE 任务。
此模型继承自 TFPreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。
此模型还是一个tf.keras.Model子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取与一般用法和行为相关的所有内容。
transformers
中的 TensorFlow 模型和层接受两种格式的输入:
- 将所有输入作为关键字参数(类似于 PyTorch 模型),或
- 将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于有这种支持,当使用model.fit()
等方法时,应该可以“正常工作” - 只需以model.fit()
支持的任何格式传递输入和标签!但是,如果您想在 Keras 方法之外使用第二种格式,例如在使用 KerasFunctional
API 创建自己的层或模型时,有三种可能性可以用来收集第一个位置参数中的所有输入张量:
- 只有一个带有
input_ids
的张量,没有其他内容:model(input_ids)
- 一个长度可变的列表,其中包含一个或多个按照文档字符串中给定的顺序的输入张量:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个带有一个或多个与文档字符串中给定的输入名称相关联的输入张量的字典:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用子类化创建模型和层时,您无需担心任何这些,因为您可以像对待任何其他 Python 函数一样传递输入!
call
( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFSequenceClassifierOutput or tuple(tf.Tensor)
参数
input_ids
(形状为(batch_size, sequence_length)
的Numpy
数组或tf.Tensor
)- 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call
()和 PreTrainedTokenizer.encode()。什么是输入 ID?attention_mask
(形状为(batch_size, sequence_length)
的Numpy
数组或tf.Tensor
,可选)— 用于避免在填充标记索引上执行注意力的掩码。选择在[0, 1]
中的掩码值:
- 1 表示未被遮蔽的标记,
- 0 表示被遮蔽的标记。什么是注意力掩码?
token_type_ids
(形状为(batch_size, sequence_length)
的Numpy
数组或tf.Tensor
,可选)— 指示输入的第一部分和第二部分的段标记索引。索引在[0, 1]
中选择:
- 0 对应于句子 A标记,
- 1 对应于句子 B标记。什么是标记类型 ID?
position_ids
(形状为(batch_size, sequence_length)
的Numpy
数组或tf.Tensor
,可选)— 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。什么是位置 ID?head_mask
(形状为(num_heads,)
或(num_layers, num_heads)
的Numpy
数组或tf.Tensor
,可选)— 用于使自注意力模块的选定头部失效的掩码。选择在[0, 1]
中的掩码值:
- 1 表示头部未被遮蔽,
- 0 表示头部被遮蔽。
inputs_embeds
(形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
,可选)— 可选地,您可以选择直接传递嵌入表示而不是传递input_ids
。如果您想要更多控制如何将input_ids
索引转换为相关向量,而不是模型的内部嵌入查找矩阵,则这很有用。output_attentions
(bool
,可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。此参数仅可在急切模式下使用,在图模式下将使用配置中的值。output_hidden_states
(bool
,可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。此参数仅可在急切模式下使用,在图模式下将使用配置中的值。return_dict
(bool
,可选)— 是否返回 ModelOutput 而不是普通元组。此参数可在急切模式下使用,在图模式下该值将始终设置为 True。training
(bool
,可选,默认为False
)— 是否在训练模式下使用模型(一些模块如 dropout 模块在训练和评估之间有不同的行为)。labels
(形状为(batch_size,)
的tf.Tensor
,可选)— 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
中。如果config.num_labels == 1
,则计算回归损失(均方损失),如果config.num_labels > 1
,则计算分类损失(交叉熵)。
返回
transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或由各种元素组成的tf.Tensor
元组(如果传递了return_dict=False
或当config.return_dict=False
时)取决于配置(XLMRobertaConfig)和输入。
loss
(形状为(batch_size,)
的tf.Tensor
,可选,当提供labels
时返回)— 分类(或如果config.num_labels==1
则为回归)损失。logits
(形状为(batch_size, config.num_labels)
的tf.Tensor
)— 分类(或如果config.num_labels==1
则为回归)得分(SoftMax 之前)。hidden_states
(tuple(tf.Tensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) - 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每个层的输出)。
模型在每个层的输出处的隐藏状态加上初始嵌入输出。attentions
(tuple(tf.Tensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) - 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每个层一个)。
在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
TFXLMRobertaForSequenceClassification 的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module
实例,而不是这个,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, TFXLMRobertaForSequenceClassification >>> import tensorflow as tf >>> tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-emotion") >>> model = TFXLMRobertaForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-emotion") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf") >>> logits = model(**inputs).logits >>> predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0]) >>> model.config.id2label[predicted_class_id] 'optimism'
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)` >>> num_labels = len(model.config.id2label) >>> model = TFXLMRobertaForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-emotion", num_labels=num_labels) >>> labels = tf.constant(1) >>> loss = model(**inputs, labels=labels).loss >>> round(float(loss), 2) 0.08
TFXLMRobertaForMultipleChoice
class transformers.TFXLMRobertaForMultipleChoice
( config *inputs **kwargs )
参数
config
(XLMRobertaConfig) - 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
在顶部具有多选分类头的 XLM Roberta 模型(在池化输出的顶部有一个线性层和一个 softmax),例如用于 RocStories/SWAG 任务。
这个模型继承自 TFPreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。
这个模型也是一个tf.keras.Model子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取与一般用法和行为相关的所有内容。
TensorFlow 模型和transformers
中的层接受两种格式作为输入:
- 将所有输入作为关键字参数(类似于 PyTorch 模型),或
- 将所有输入作为列表、元组或字典放在第一个位置参数中。
第二种格式得到支持的原因是,当将输入传递给模型和层时,Keras 方法更喜欢这种格式。由于这种支持,当使用诸如model.fit()
之类的方法时,对您来说应该“只需工作” - 只需以model.fit()
支持的任何格式传递您的输入和标签!但是,如果您想在 Keras 方法之外使用第二种格式,比如在使用 KerasFunctional
API 创建自己的层或模型时,有三种可能性可以用来收集所有输入张量在第一个位置参数中:
- 只有一个
input_ids
的单个张量,没有其他内容:model(input_ids)
- 一个长度可变的列表,其中包含一个或多个输入张量,按照文档字符串中给定的顺序:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个字典,其中包含与文档字符串中给定的输入名称相关联的一个或多个输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用 子类化 创建模型和层时,您无需担心这些内容,因为您可以像对待任何其他 Python 函数一样传递输入!
call
( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput or tuple(tf.Tensor)
参数
input_ids
(Numpy 数组
或tf.Tensor
,形状为(batch_size, num_choices, sequence_length)
) — 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参见 PreTrainedTokenizer.call
() 和 PreTrainedTokenizer.encode()。什么是输入 ID?attention_mask
(Numpy 数组
或tf.Tensor
,形状为(batch_size, num_choices, sequence_length)
,可选) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选定在[0, 1]
范围内:
- 1 表示被
未掩码
的标记, - 0 表示被
掩码
的标记。什么是注意力掩码?
token_type_ids
(Numpy 数组
或tf.Tensor
,形状为(batch_size, num_choices, sequence_length)
,可选) — 指示输入的第一部分和第二部分的段标记索引。索引选定在[0, 1]
范围内:
- 0 对应于一个 句子 A 的标记,
- 1 对应于一个 句子 B 的标记。什么是标记类型 ID?
position_ids
(Numpy 数组
或tf.Tensor
,形状为(batch_size, num_choices, sequence_length)
,可选) — 每个输入序列标记在位置嵌入中的位置索引。选定范围为[0, config.max_position_embeddings - 1]
。什么是位置 ID?head_mask
(Numpy 数组
或tf.Tensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于使自注意力模块的选定头部失效的掩码。掩码值选定在[0, 1]
范围内:
- 1 表示头部是
未掩码的
, - 0 表示头部是
掩码
的。
inputs_embeds
(tf.Tensor
,形状为(batch_size, num_choices, sequence_length, hidden_size)
,可选) — 可选地,您可以选择直接传递一个嵌入表示,而不是传递input_ids
。如果您想要更多控制权来将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。output_attentions
(bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。此参数仅在急切模式下使用,在图模式下将使用配置中的值。output_hidden_states
(bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。此参数仅在急切模式下使用,在图模式下将使用配置中的值。return_dict
(bool
,可选) — 是否返回一个 ModelOutput 而不是一个普通元组。此参数可以在急切模式下使用,在图模式下该值将始终设置为 True。training
(bool
,可选,默认为False
) — 是否在训练模式下使用模型(一些模块,如 dropout 模块,在训练和评估之间有不同的行为)。labels
(tf.Tensor
,形状为(batch_size,)
,可选) — 用于计算多项选择分类损失的标签。索引应该在[0, ..., num_choices]
范围内,其中num_choices
是输入张量第二维的大小。(参见上面的input_ids
)
返回值
transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput 或tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput 或一个tf.Tensor
元组(如果传递了return_dict=False
或当config.return_dict=False
时)包括根据配置(XLMRobertaConfig)和输入的各种元素。
loss
(tf.Tensor
形状为*(batch_size, )*,可选,当提供labels
时返回)— 分类损失。logits
(形状为(batch_size, num_choices)
的tf.Tensor
)— num_choices是输入张量的第二维度。(参见上面的input_ids)。
SoftMax 之前的分类分数。hidden_states
(tuple(tf.Tensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回)— 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每个层的输出)。
模型在每个层的输出处的隐藏状态加上初始嵌入输出。attentions
(tuple(tf.Tensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每层一个)。
注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
TFXLMRobertaForMultipleChoice 的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, TFXLMRobertaForMultipleChoice >>> import tensorflow as tf >>> tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base") >>> model = TFXLMRobertaForMultipleChoice.from_pretrained("xlm-roberta-base") >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> choice0 = "It is eaten with a fork and a knife." >>> choice1 = "It is eaten while held in the hand." >>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="tf", padding=True) >>> inputs = {k: tf.expand_dims(v, 0) for k, v in encoding.items()} >>> outputs = model(inputs) # batch size is 1 >>> # the linear classifier still needs to be trained >>> logits = outputs.logits
TFXLMRobertaForTokenClassification
class transformers.TFXLMRobertaForTokenClassification
( config *inputs **kwargs )
参数
config
(XLMRobertaConfig)— 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
XLM RoBERTa 模型,顶部带有一个标记分类头(隐藏状态输出的顶部线性层),例如用于命名实体识别(NER)任务。
该模型继承自 TFPreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。
该模型也是tf.keras.Model的子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取与一般用法和行为相关的所有内容。
transformers
中的 TensorFlow 模型和层接受两种格式的输入:
- 将所有输入作为关键字参数(类似于 PyTorch 模型),或
- 将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用 model.fit()
等方法时,应该对您“只需工作” - 只需传递您的输入和标签,以任何 model.fit()
支持的格式!然而,如果您想在 Keras 方法之外使用第二种格式,比如在使用 Keras Functional
API 创建自己的层或模型时,有三种可能性可用于收集所有输入张量在第一个位置参数中:
- 只有一个包含
input_ids
的张量,没有其他内容:model(input_ids)
- 一个长度可变的列表,其中包含按照文档字符串中给定的顺序的一个或多个输入张量:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个字典,其中包含一个或多个与文档字符串中给定的输入名称相关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用子类化创建模型和层时,您无需担心任何这些,因为您可以像对待任何其他 Python 函数一样传递输入!
call
( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFTokenClassifierOutput or tuple(tf.Tensor)
参数
input_ids
(Numpy array
或tf.Tensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参见 PreTrainedTokenizer.call
() 和 PreTrainedTokenizer.encode()。什么是输入 ID?attention_mask
(Numpy array
或tf.Tensor
,形状为(batch_size, sequence_length)
,可选) — 避免在填充标记索引上执行注意力的掩码。掩码值选在[0, 1]
:
- 1 表示未被
masked
的标记, - 0 用于被
masked
的标记。什么是注意力掩码?
token_type_ids
(Numpy array
或tf.Tensor
,形状为(batch_size, sequence_length)
,可选) — 指示输入的第一部分和第二部分的段标记索引。索引选在[0, 1]
:
- 0 对应于 句子 A 标记,
- 1 对应于 句子 B 标记。什么是标记类型 ID?
position_ids
(Numpy array
或tf.Tensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列标记在位置嵌入中的位置索引。选在范围[0, config.max_position_embeddings - 1]
。什么是位置 ID?head_mask
(Numpy array
或tf.Tensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于使自注意力模块中选择的头部失效的掩码。掩码值选在[0, 1]
范围内:
- 1 表示头部未被
masked
, - 0 表示头部被
masked
。
inputs_embeds
(tf.Tensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想要更多控制如何将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。output_attentions
(bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
。此参数仅在急切模式下可用,在图模式下将使用配置中的值。output_hidden_states
(bool
,optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。此参数仅在急切模式下使用,在图模式下将使用配置中的值。return_dict
(bool
,optional) — 是否返回 ModelOutput 而不是普通元组。此参数可在急切模式下使用,在图模式下该值将始终设置为 True。training
(bool
,optional,默认为False
) — 是否在训练模式下使用模型(一些模块,如 dropout 模块,在训练和评估之间具有不同的行为)。labels
(tf.Tensor
,形状为(batch_size, sequence_length)
,optional) — 用于计算标记分类损失的标签。索引应在[0, ..., config.num_labels - 1]
范围内。
返回值
transformers.modeling_tf_outputs.TFTokenClassifierOutput 或 tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFTokenClassifierOutput 或一个tf.Tensor
元组(如果传递return_dict=False
或config.return_dict=False
时)包含各种元素,取决于配置(XLMRobertaConfig)和输入。
loss
(tf.Tensor
,形状为(n,)
,optional,当提供labels
时返回) — 分类损失。logits
(tf.Tensor
,形状为(batch_size, sequence_length, config.num_labels)
) — 分类分数(SoftMax 之前)。hidden_states
(tuple(tf.Tensor)
, optional, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入的输出,一个用于每一层的输出)。
模型在每一层输出的隐藏状态以及初始嵌入输出。attentions
(tuple(tf.Tensor)
, optional, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每层一个)。
在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
TFXLMRobertaForTokenClassification 的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, TFXLMRobertaForTokenClassification >>> import tensorflow as tf >>> tokenizer = AutoTokenizer.from_pretrained("ydshieh/roberta-large-ner-english") >>> model = TFXLMRobertaForTokenClassification.from_pretrained("ydshieh/roberta-large-ner-english") >>> inputs = tokenizer( ... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="tf" ... ) >>> logits = model(**inputs).logits >>> predicted_token_class_ids = tf.math.argmax(logits, axis=-1) >>> # Note that tokens are classified rather then input words which means that >>> # there might be more predicted token classes than words. >>> # Multiple token classes might account for the same word >>> predicted_tokens_classes = [model.config.id2label[t] for t in predicted_token_class_ids[0].numpy().tolist()] >>> predicted_tokens_classes ['O', 'ORG', 'ORG', 'O', 'O', 'O', 'O', 'O', 'LOC', 'O', 'LOC', 'LOC']
>>> labels = predicted_token_class_ids >>> loss = tf.math.reduce_mean(model(**inputs, labels=labels).loss) >>> round(float(loss), 2) 0.01
TFXLMRobertaForQuestionAnswering
class transformers.TFXLMRobertaForQuestionAnswering
( config *inputs **kwargs )
参数
config
(XLMRobertaConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。
XLM RoBERTa 模型,顶部带有一个用于提取式问答任务(如 SQuAD)的跨度分类头(在隐藏状态输出的线性层上计算span start logits
和span end logits
)。
此模型继承自 TFPreTrainedModel。检查超类文档,了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。
此模型也是tf.keras.Model的子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取有关一般用法和行为的所有相关信息。
transformers
中的 TensorFlow 模型和层接受两种格式的输入:
- 在所有输入都作为关键字参数(如 PyTorch 模型)时,或者
- 在第一个位置参数中将所有输入作为列表、元组或字典。
支持第二种格式的原因是 Keras 方法在向模型和层传递输入时更喜欢这种格式。由于有了这种支持,当使用model.fit()
等方法时,应该可以“正常工作” - 只需像对待model.fit()
支持的任何其他格式一样传递输入和标签!但是,如果您想在 Keras 方法之外使用第二种格式,例如在使用 Keras Functional
API 创建自己的层或模型时,有三种可能性可用于收集所有输入张量在第一个位置参数中:
- 一个仅包含
input_ids
的单个张量,没有其他内容:model(input_ids)
- 一个长度可变的列表,其中包含一个或多个按照文档字符串中给定的顺序的输入张量:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个字典,其中包含一个或多个与文档字符串中给定的输入名称相关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用子类化创建模型和层时,您无需担心任何这些,因为您可以像对待其他 Python 函数一样传递输入!
call
( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None start_positions: np.ndarray | tf.Tensor | None = None end_positions: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput or tuple(tf.Tensor)
参数
input_ids
(形状为(batch_size, sequence_length)
的Numpy
数组或tf.Tensor
)- 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call
()和 PreTrainedTokenizer.encode()。什么是输入 ID?attention_mask
(形状为(batch_size, sequence_length)
的Numpy
数组或tf.Tensor
,可选)- 用于避免在填充标记索引上执行注意力的掩码。掩码值选在[0, 1]
之间:
- 1 表示未被
masked
的标记, - 0 表示被
masked
的标记。什么是注意力掩码?
token_type_ids
(形状为(batch_size, sequence_length)
的Numpy
数组或tf.Tensor
,可选)- 段标记索引,指示输入的第一部分和第二部分。索引在[0, 1]
中选择:
- 0 对应于句子 A标记,
- 1 对应于句子 B标记。什么是标记类型 ID?
position_ids
(形状为(batch_size, sequence_length)
的Numpy
数组或tf.Tensor
,可选)- 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。什么是位置 ID?head_mask
(形状为(num_heads,)
或(num_layers, num_heads)
的Numpy
数组或tf.Tensor
,可选)- 用于使自注意力模块中选择的头部失效的掩码。掩码值选在[0, 1]
之间:
- 1 表示头部未被遮蔽,
- 0 表示头部被遮蔽。
inputs_embeds
(形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
,可选)- 可选地,您可以直接传递嵌入表示而不是传递input_ids
。如果您想要更多控制如何将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。output_attentions
(bool
,可选)- 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。此参数仅在急切模式下使用,在图模式下将使用配置中的值。output_hidden_states
(bool
,可选)- 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。此参数仅在急切模式下使用,在图模式下将使用配置中的值。return_dict
(bool
,可选)- 是否返回 ModelOutput 而不是普通元组。此参数可在急切模式下使用,在图模式下该值将始终设置为 True。training
(bool
,可选,默认为False
)- 是否在训练模式下使用模型(一些模块如 dropout 模块在训练和评估之间有不同的行为)。start_positions
(形状为(batch_size,)
的tf.Tensor
,可选)- 用于计算标记跨度起始位置的位置(索引)的标签,以计算标记分类损失。位置被夹紧到序列的长度(sequence_length
)。超出序列范围的位置不会被考虑在内以计算损失。end_positions
(形状为(batch_size,)
的tf.Tensor
,可选)- 用于计算标记跨度结束位置的位置(索引)的标签,以计算标记分类损失。位置被夹紧到序列的长度(sequence_length
)。超出序列范围的位置不会被考虑在内以计算损失。
返回值
transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput 或tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput 或一个tf.Tensor
元组(如果传递return_dict=False
或config.return_dict=False
)包含各种元素,取决于配置(XLMRobertaConfig)和输入。
loss
(形状为(batch_size,)
的tf.Tensor
,可选,当提供start_positions
和end_positions
时返回)- 总跨度提取损失是起始位置和结束位置的交叉熵之和。start_logits
(形状为(batch_size, sequence_length)
的tf.Tensor
)- SoftMax 之前的跨度起始分数。end_logits
(形状为(batch_size, sequence_length)
的tf.Tensor
)- SoftMax 之前的跨度结束分数。hidden_states
(tuple(tf.Tensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回)- 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入的输出+一个用于每层的输出)。
模型在每一层输出的隐藏状态加上初始嵌入输出。attentions
(tuple(tf.Tensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每层一个)。
注意力权重在注意力 Softmax 之后,用于计算自注意力头中的加权平均值。
TFXLMRobertaForQuestionAnswering 的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的配方需要在此函数内定义,但应该在此之后调用Module
实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, TFXLMRobertaForQuestionAnswering >>> import tensorflow as tf >>> tokenizer = AutoTokenizer.from_pretrained("ydshieh/roberta-base-squad2") >>> model = TFXLMRobertaForQuestionAnswering.from_pretrained("ydshieh/roberta-base-squad2") >>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" >>> inputs = tokenizer(question, text, return_tensors="tf") >>> outputs = model(**inputs) >>> answer_start_index = int(tf.math.argmax(outputs.start_logits, axis=-1)[0]) >>> answer_end_index = int(tf.math.argmax(outputs.end_logits, axis=-1)[0]) >>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1] >>> tokenizer.decode(predict_answer_tokens) ' puppet'
>>> # target is "nice puppet" >>> target_start_index = tf.constant([14]) >>> target_end_index = tf.constant([15]) >>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index) >>> loss = tf.math.reduce_mean(outputs.loss) >>> round(float(loss), 2) 0.86
JAXHide JAX 内容
Transformers 4.37 中文文档(六十二)(5)https://developer.aliyun.com/article/1564100