Transformers 4.37 中文文档(五十七)(6)

简介: Transformers 4.37 中文文档(五十七)

Transformers 4.37 中文文档(五十七)(5)https://developer.aliyun.com/article/1565338


TFRoFormerModel

class transformers.TFRoFormerModel

< source >

( config: RoFormerConfig *inputs **kwargs )

参数

  • config(RoFormerConfig) - 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

裸 RoFormer 模型变压器输出原始隐藏状态,没有特定的头部。

这个模型继承自 TFPreTrainedModel。检查超类文档以获取库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

这个模型也是一个tf.keras.Model子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取与一般用法和行为相关的所有内容。

transformers中的 TensorFlow 模型和层接受两种格式的输入:

  • 将所有输入作为关键字参数(类似于 PyTorch 模型),或
  • 将所有输入作为列表、元组或字典放在第一个位置参数中。

支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于有了这种支持,当使用model.fit()等方法时,应该可以“正常工作” - 只需以model.fit()支持的任何格式传递输入和标签!但是,如果您想在 Keras 方法之外使用第二种格式,比如在使用 KerasFunctional API 创建自己的层或模型时,有三种可能性可以用来收集第一个位置参数中的所有输入张量:

  • 一个只包含input_ids的单个张量,没有其他内容:model(input_ids)
  • 一个长度不定的列表,其中包含一个或多个按照文档字符串中给定的顺序的输入张量:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 一个字典,其中包含一个或多个与文档字符串中给定的输入名称相关联的输入张量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用子类化创建模型和层时,您不需要担心这些问题,因为您可以像对待任何其他 Python 函数一样传递输入!

call

<来源>

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFBaseModelOutputWithPooling or tuple(tf.Tensor)

参数

  • input_idsnp.ndarraytf.TensorList[tf.Tensor]Dict[str, tf.Tensor]Dict[str, np.ndarray],每个示例的形状必须为(batch_size, sequence_length)) - 词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call()和 PreTrainedTokenizer.encode()。
    输入 ID 是什么?
  • attention_mask(形状为(batch_size, sequence_length)np.ndarraytf.Tensor可选) - 避免在填充标记索引上执行注意力的蒙版。选择的蒙版值为[0, 1]
  • 对于“未蒙版”的标记为 1,
  • 对于“蒙版”的标记为 0。
  • 注意力蒙版是什么?
  • token_type_ids(形状为(batch_size, sequence_length)np.ndarraytf.Tensor可选) - 指示输入的第一部分和第二部分的段标记索引。索引选择在[0, 1]中:
  • 0 对应于“句子 A”标记,
  • 1 对应于句子 B令牌。
  • 令牌类型 ID 是什么?
  • head_mask (np.ndarraytf.Tensor,形状为(num_heads,)(num_layers, num_heads)可选) — 用于使自注意力模块的选定头部失效的掩码。在[0, 1]中选择的掩码值:
  • 1 表示头部未被屏蔽,
  • 0 表示头部被屏蔽。
  • inputs_embeds (np.ndarraytf.Tensor,形状为(batch_size, sequence_length, hidden_size)可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制权来将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions。此参数仅在急切模式下可用,在图模式下将使用配置中的值。
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states。此参数仅在急切模式下可用,在图模式下将使用配置中的值。
  • return_dict (bool可选) — 是否返回一个 ModelOutput 而不是一个普通元组。此参数可在急切模式下使用,在图模式下该值将始终设置为 True。
  • training (bool, 可选,默认为`False“) — 是否在训练模式下使用模型(一些模块,如 dropout 模块,在训练和评估之间具有不同的行为)。

返回

transformers.modeling_tf_outputs.TFBaseModelOutputWithPooling 或 tuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFBaseModelOutputWithPooling 或一个tf.Tensor元组(如果传递return_dict=False或当config.return_dict=False时)包括根据配置(RoFormerConfig)和输入的不同元素。

  • last_hidden_state (tf.Tensor,形状为(batch_size, sequence_length, hidden_size)) — 模型最后一层的隐藏状态序列。
  • pooler_output (tf.Tensor,形状为(batch_size, hidden_size)) — 序列第一个令牌(分类令牌)的最后一层隐藏状态,进一步由线性层和 Tanh 激活函数处理。线性层的权重是在预训练期间从下一个句子预测(分类)目标中训练的。
    此输出通常不是输入的语义内容的良好摘要,您通常最好对整个输入序列的隐藏状态序列进行平均或池化。
  • hidden_states (tuple(tf.Tensor)可选,当传递output_hidden_states=True或当config.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)tf.Tensor元组(一个用于嵌入的输出 + 一个用于每一层的输出)。
    模型在每一层输出的隐藏状态以及初始嵌入输出。
  • attentions (tuple(tf.Tensor)可选,当传递output_attentions=True或当config.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每层一个)。
    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

TFRoFormerModel 的前向方法,覆盖了__call__特殊方法。

尽管前向传递的方法需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, TFRoFormerModel
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
>>> model = TFRoFormerModel.from_pretrained("junnyu/roformer_chinese_base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)
>>> last_hidden_states = outputs.last_hidden_state

TFRoFormerForMaskedLM

class transformers.TFRoFormerForMaskedLM

<来源>

( config: RoFormerConfig *inputs **kwargs )

参数

  • config(RoFormerConfig)- 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

RoFormer 模型,顶部带有一个语言建模头。

此模型继承自 TFPreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

这个模型也是一个tf.keras.Model子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取与一般用法和行为相关的所有内容。

transformers中的 TensorFlow 模型和层接受两种格式的输入:

  • 将所有输入作为关键字参数(类似于 PyTorch 模型),或者
  • 将所有输入作为列表、元组或字典放在第一个位置参数中。

支持第二种格式的原因是,当将输入传递给模型和层时,Keras 方法更喜欢这种格式。由于这种支持,当使用model.fit()等方法时,您应该可以“正常工作” - 只需以model.fit()支持的任何格式传递输入和标签!但是,如果您想在 Keras 方法之外使用第二种格式,比如在使用 KerasFunctional API 创建自己的层或模型时,有三种可能性可以用来收集所有输入张量放在第一个位置参数中:

  • 只有一个包含input_ids的张量,没有其他内容:model(input_ids)
  • 一个长度可变的列表,其中包含一个或多个输入张量,按照文档字符串中给定的顺序:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 一个包含与文档字符串中给定的输入名称相关联的一个或多个输入张量的字典:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用子类化创建模型和层时,您无需担心这些问题,因为您可以像对待其他 Python 函数一样传递输入!

call

<来源>

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFMaskedLMOutput or tuple(tf.Tensor)

参数

  • input_idsnp.ndarraytf.TensorList[tf.Tensor]Dict[str, tf.Tensor]Dict[str, np.ndarray],每个示例的形状必须为(batch_size, sequence_length))- 词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。查看 PreTrainedTokenizer.call()和 PreTrainedTokenizer.encode()获取详细信息。
    什么是输入 ID?
  • attention_mask (形状为(batch_size, sequence_length)np.ndarraytf.Tensor,*可选*) — 用于避免在填充标记索引上执行注意力的掩码。 选择的掩码值在[0, 1]`中:
  • 1 表示未被掩码的标记,
  • 0 表示被掩码的标记。
  • 什么是注意力掩码?
  • token_type_ids (形状为(batch_size, sequence_length)np.ndarraytf.Tensor,*可选*) — 段标记索引,指示输入的第一部分和第二部分。 索引在[0, 1]`中选择:
  • 0 对应于一个句子 A标记,
  • 1 对应于一个句子 B标记。
  • 什么是标记类型 ID?
  • head_mask (形状为(num_heads,)(num_layers, num_heads)np.ndarraytf.Tensor,*可选*) — 用于使自注意力模块的选定头部失效的掩码。 选择的掩码值在[0, 1]`中:
  • 1 表示头部未被掩码,
  • 0 表示头部被掩码。
  • inputs_embeds (形状为(batch_size, sequence_length, hidden_size)np.ndarraytf.Tensor,*可选*) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。 如果您想要更多控制如何将input_ids`索引转换为相关向量,而不是模型的内部嵌入查找矩阵,则这很有用。
  • output_attentions (布尔值可选) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参见返回张量下的attentions。 这个参数只能在急切模式下使用,在图模式下将使用配置中的值。
  • output_hidden_states (布尔值可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参见返回张量下的hidden_states。 这个参数只能在急切模式下使用,在图模式下将使用配置中的值。
  • return_dict (布尔值可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。 这个参数可以在急切模式下使用,在图模式下该值将始终设置为 True。
  • training (布尔值可选,默认为`False“) — 是否在训练模式下使用模型(一些模块如 dropout 模块在训练和评估之间有不同的行为)。
  • labels (形状为(batch_size, sequence_length)tf.Tensornp.ndarray,*可选*) — 用于计算掩码语言建模损失的标签。 索引应在[-100, 0, …, config.vocab_size]中(请参阅input_ids文档字符串)索引设置为-100的标记将被忽略(掩码),仅对具有标签在[0, …, config.vocab_size]`中的标记计算损失

返回

transformers.modeling_tf_outputs.TFMaskedLMOutput 或tuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFMaskedLMOutput 或一个tf.Tensor元组(如果传递了return_dict=Falseconfig.return_dict=False时)包括根据配置(RoFormerConfig)和输入的不同元素。

  • 损失 (形状为(n,)tf.Tensor,*可选*,当提供labels`时返回,其中 n 是非掩码标签的数量) — 掩码语言建模(MLM)损失。
  • logits (形状为(batch_size, sequence_length, config.vocab_size)tf.Tensor`) — 语言建模头部的预测分数(SoftMax 之前每个词汇标记的分数)。
  • hidden_states (tuple(tf.Tensor), optional, 当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)tf.Tensor元组(一个用于嵌入的输出 + 一个用于每个层的输出)。
    模型在每个层的输出处的隐藏状态加上初始嵌入输出。
  • attentions (tuple(tf.Tensor), optional, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每个层一个)。
    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

TFRoFormerForMaskedLM 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者会负责运行前处理和后处理步骤,而后者会默默忽略它们。

例如:

>>> from transformers import AutoTokenizer, TFRoFormerForMaskedLM
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
>>> model = TFRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base")
>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="tf")
>>> logits = model(**inputs).logits
>>> # retrieve index of [MASK]
>>> mask_token_index = tf.where((inputs.input_ids == tokenizer.mask_token_id)[0])
>>> selected_logits = tf.gather_nd(logits[0], indices=mask_token_index)
>>> predicted_token_id = tf.math.argmax(selected_logits, axis=-1)
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="tf")["input_ids"]
>>> # mask labels of non-[MASK] tokens
>>> labels = tf.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)
>>> outputs = model(**inputs, labels=labels)

TFRoFormerForCausalLM

class transformers.TFRoFormerForCausalLM

<来源>

( config: RoFormerConfig *inputs **kwargs )

参数

  • config(RoFormerConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

RoFormer 模型在顶部具有用于 CLM 微调的语言建模头。

此模型继承自 TFPreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。

此模型还是tf.keras.Model子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取与一般用法和行为相关的所有内容。

transformers中的 TensorFlow 模型和层接受两种格式的输入:

  • 将所有输入作为关键字参数(类似于 PyTorch 模型),或者
  • 将所有输入作为列表、元组或字典放在第一个位置参数中。

支持第二种格式的原因是,当将输入传递给模型和层时,Keras 方法更喜欢这种格式。由于这种支持,当使用model.fit()等方法时,应该可以“正常工作” - 只需以model.fit()支持的任何格式传递输入和标签!但是,如果您想在 Keras 方法之外使用第二种格式,比如在使用 KerasFunctional API 创建自己的层或模型时,有三种可能性可以用来收集第一个位置参数中的所有输入张量:

  • 仅具有input_ids的单个张量,没有其他内容:model(input_ids)
  • 具有不同长度的列表,其中包含按照文档字符串中给定的顺序的一个或多个输入张量:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 一个字典,其中包含与文档字符串中给定的输入名称相关联的一个或多个输入张量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用子类化创建模型和层时,您无需担心这些问题,因为您可以像对待任何其他 Python 函数一样传递输入!

call

<来源>

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFCausalLMOutput or tuple(tf.Tensor)

返回

transformers.modeling_tf_outputs.TFCausalLMOutput 或tuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFCausalLMOutput 或一个tf.Tensor元组(如果传递了return_dict=False或当config.return_dict=False时)包含根据配置(RoFormerConfig)和输入的不同元素。

  • loss(形状为(n,)tf.Tensor可选,当提供labels时返回,其中 n 是非掩码标签的数量) — 语言建模损失(用于下一个标记预测)。
  • logits(形状为(batch_size, sequence_length, config.vocab_size)tf.Tensor) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。
  • hidden_statestuple(tf.Tensor)可选,当传递output_hidden_states=True或当config.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)tf.Tensor元组(一个用于嵌入的输出 + 一个用于每个层的输出)。
    模型在每一层输出处的隐藏状态加上初始嵌入输出。
  • attentionstuple(tf.Tensor)可选,当传递output_attentions=True或当config.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每层一个)。
    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

labels(形状为(batch_size, sequence_length)tf.Tensornp.ndarray可选):用于计算交叉熵分类损失的标签。索引应在[0, ..., config.vocab_size - 1]范围内。

示例:

>>> from transformers import AutoTokenizer, TFRoFormerForCausalLM
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
>>> model = TFRoFormerForCausalLM.from_pretrained("junnyu/roformer_chinese_base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)
>>> logits = outputs.logits

TFRoFormerForSequenceClassification

class transformers.TFRoFormerForSequenceClassification

<来源>

( config: RoFormerConfig *inputs **kwargs )

参数

  • config(RoFormerConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

RoFormer 模型变压器,顶部带有一个序列分类/回归头,例如,用于 GLUE 任务。

这个模型继承自 TFPreTrainedModel。查看超类文档以获取库实现的通用方法(例如下载或保存,调整输入嵌入大小,修剪头等)。

这个模型也是一个tf.keras.Model子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取与一般用法和行为相关的所有内容。

transformers中的 TensorFlow 模型和层接受两种格式的输入:

  • 将所有输入作为关键字参数(类似于 PyTorch 模型),或
  • 将所有输入作为列表、元组或字典的第一个位置参数。

支持第二种格式的原因是,Keras 方法在向模型和层传递输入时更喜欢这种格式。由于这种支持,在使用诸如model.fit()之类的方法时,应该对您“只需传递model.fit()支持的任何格式的输入和标签” - 事情应该“只需传递model.fit()支持的任何格式的输入和标签”!然而,如果您想在 Keras 方法之外使用第二种格式,比如在使用 KerasFunctional API 创建自己的层或模型时,有三种可能性可以用来收集第一个位置参数中的所有输入张量:

  • 只有一个包含input_ids的张量,没有其他内容:model(input_ids)
  • 一个长度可变的列表,其中包含按照文档字符串中给定的顺序的一个或多个输入张量:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 一个字典,其中包含与文档字符串中给定的输入名称相关联的一个或多个输入张量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用子类化创建模型和层时,您不需要担心这些问题,因为您可以像将输入传递给任何其他 Python 函数一样传递输入!

call

<来源>

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFSequenceClassifierOutput or tuple(tf.Tensor)

参数

  • input_idsnp.ndarraytf.TensorList[tf.Tensor] ``Dict[str, tf.Tensor]Dict[str, np.ndarray],每个示例的形状必须为(batch_size, sequence_length)`) - 词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 来获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call()和 PreTrainedTokenizer.encode()。
    什么是输入 ID?
  • attention_mask(形状为(batch_size, sequence_length)np.ndarraytf.Tensor可选) - 用于避免在填充标记索引上执行注意力的掩码。掩码值在[0, 1]中选择:
  • 1 表示“未屏蔽”的标记,
  • 0 表示“屏蔽”的标记。
  • 什么是注意力掩码?
  • token_type_idsnp.ndarray或形状为(batch_size, sequence_length)tf.Tensor可选) - 段标记索引,用于指示输入的第一部分和第二部分。索引在[0, 1]中选择:
  • 0 对应于“句子 A”标记,
  • 1 对应于“句子 B”标记。
  • 什么是令牌类型 ID?
  • head_mask(形状为(num_heads,)(num_layers, num_heads)np.ndarraytf.Tensor可选) - 用于使自注意力模块的选定头部失效的掩码。掩码值在[0, 1]中选择:
  • 1 表示头部未“屏蔽”,
  • 0 表示头部被“屏蔽”。
  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)np.ndarraytf.Tensor可选) - 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制权,以便将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。
  • output_attentionsbool可选) - 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions。此参数仅在急切模式下使用,在图模式下将使用配置中的值。
  • output_hidden_statesbool可选) - 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states。此参数仅在急切模式下使用,在图模式下将使用配置中的值。
  • return_dict (bool, optional) — 是否返回 ModelOutput 而不是普通元组。此参数可以在急切模式下使用,在图模式下该值将始终设置为 True。
  • training (bool, optional, defaults to `False“) — 是否在训练模式下使用模型(一些模块如 dropout 模块在训练和评估之间有不同的行为)。
  • labels (tf.Tensor or np.ndarray of shape (batch_size,), optional) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]范围内。如果config.num_labels == 1,则计算回归损失(均方损失),如果config.num_labels > 1,则计算分类损失(交叉熵)。

返回值

transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或tuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或一个tf.Tensor元组(如果传递return_dict=Falseconfig.return_dict=False)包含根据配置(RoFormerConfig)和输入的各种元素。

  • loss (tf.Tensor of shape (batch_size, ), optional, 当提供labels时返回) — 分类(如果 config.num_labels==1 则为回归)损失。
  • logits (tf.Tensor of shape (batch_size, config.num_labels)) — 分类(如果 config.num_labels==1 则为回归)得分(SoftMax 之前)。
  • hidden_states (tuple(tf.Tensor), optional, 当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)tf.Tensor元组(一个用于嵌入输出,一个用于每一层的输出)。
    模型在每一层输出的隐藏状态加上初始嵌入输出。
  • attentions (tuple(tf.Tensor), optional, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每层一个)。
    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

TFRoFormerForSequenceClassification 的前向方法,覆盖__call__特殊方法。

虽然前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是在此之后调用,因为前者负责运行前处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, TFRoFormerForSequenceClassification
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
>>> model = TFRoFormerForSequenceClassification.from_pretrained("junnyu/roformer_chinese_base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> logits = model(**inputs).logits
>>> predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0])
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = TFRoFormerForSequenceClassification.from_pretrained("junnyu/roformer_chinese_base", num_labels=num_labels)
>>> labels = tf.constant(1)
>>> loss = model(**inputs, labels=labels).loss


Transformers 4.37 中文文档(五十七)(7)https://developer.aliyun.com/article/1565347

相关文章
|
6月前
|
机器学习/深度学习 PyTorch TensorFlow
Transformers 4.37 中文文档(四十七)(5)
Transformers 4.37 中文文档(四十七)
73 12
|
6月前
|
机器学习/深度学习 PyTorch 算法框架/工具
Transformers 4.37 中文文档(四十七)(4)
Transformers 4.37 中文文档(四十七)
97 10
|
6月前
|
机器学习/深度学习 自然语言处理 PyTorch
Transformers 4.37 中文文档(四十七)(3)
Transformers 4.37 中文文档(四十七)
79 10
|
6月前
|
存储 编解码 PyTorch
Transformers 4.37 中文文档(四十七)(1)
Transformers 4.37 中文文档(四十七)
36 6
|
6月前
|
自然语言处理 PyTorch 算法框架/工具
Transformers 4.37 中文文档(四十七)(2)
Transformers 4.37 中文文档(四十七)
36 2
|
6月前
|
PyTorch 算法框架/工具 索引
Transformers 4.37 中文文档(四十八)(4)
Transformers 4.37 中文文档(四十八)
48 1
|
6月前
|
自然语言处理 PyTorch 算法框架/工具
Transformers 4.37 中文文档(四十八)(5)
Transformers 4.37 中文文档(四十八)
33 1
|
6月前
|
存储 自然语言处理 PyTorch
Transformers 4.37 中文文档(四十八)(3)
Transformers 4.37 中文文档(四十八)
46 1
|
6月前
|
自然语言处理 PyTorch TensorFlow
Transformers 4.37 中文文档(五十七)(5)
Transformers 4.37 中文文档(五十七)
25 0
|
6月前
|
存储 自然语言处理 PyTorch
Transformers 4.37 中文文档(五十七)(3)
Transformers 4.37 中文文档(五十七)
26 0

相关实验场景

更多