Python并发编程新篇章:asyncio库使用全攻略,轻松驾驭异步世界!

简介: 【7月更文挑战第11天】Python的asyncio开启异步编程时代,通过案例展示如何用它和aiohttp构建并发爬虫。安装aiohttp后,定义异步函数`fetch`进行HTTP请求,返回状态码和内容长度。在`main`中,并发执行多个`fetch`任务,利用`asyncio.gather`收集结果。使用`async with`管理HTTP会话资源,确保释放。通过这种方式,爬虫性能大幅提升,适用于高并发场景。学习asyncio是提升并发性能的关键。

在Python的浩瀚宇宙中,并发编程一直是提升应用性能、处理高并发场景的关键技术之一。随着asyncio库的诞生,Python正式迈入了异步编程的新纪元。本文将通过一个案例分析,带你深入了解asyncio库的使用,让你轻松驾驭异步世界的奥秘。

案例背景:构建异步Web爬虫
假设我们需要编写一个Web爬虫,它需要从多个网站并行抓取数据。传统的同步爬虫会逐一请求每个URL,效率低下。而使用asyncio,我们可以实现真正的并发请求,大幅提升数据抓取速度。

准备工作:安装aiohttp库
aiohttp是一个基于asyncio的HTTP客户端/服务器框架,非常适合用于异步网络请求。首先,我们需要安装它:

bash
pip install aiohttp
编写异步爬虫
接下来,我们将使用aiohttp和asyncio编写一个简单的异步爬虫。这个爬虫将并发地请求多个URL,并打印出每个页面的状态码和内容长度。

python
import aiohttp
import asyncio

async def fetch(session, url):
async with session.get(url) as response:
return response.status, len(await response.text())

async def main():
urls = [
'http://example.com',
'http://google.com',
'http://python.org',

    # 添加更多URL...  
]  

async with aiohttp.ClientSession() as session:  
    tasks = [fetch(session, url) for url in urls]  
    results = await asyncio.gather(*tasks)  
    for status, length in results:  
        print(f'URL status: {status}, Content length: {length}')  

Python 3.7+

asyncio.run(main())
案例分析
异步函数定义:fetch函数是一个异步函数,它接收一个aiohttp.ClientSession实例和一个URL作为参数。函数内部,我们使用async with语句发起异步HTTP GET请求,并等待响应。然后,我们返回响应的状态码和内容长度。
并发执行:在main函数中,我们创建了多个fetch任务的列表,并使用asyncio.gather并发地执行这些任务。asyncio.gather会等待所有任务完成,并返回一个包含所有任务结果的列表。
资源管理:aiohttp.ClientSession是一个上下文管理器,它负责管理HTTP连接。使用async with语句可以确保会话在使用完毕后被正确关闭,释放资源。
运行异步程序:最后,我们使用asyncio.run(main())来运行异步的主函数。这是Python 3.7及以上版本中推荐的启动异步程序的方式。
总结
通过本案例,我们展示了如何使用asyncio和aiohttp库来构建高效的异步Web爬虫。异步编程不仅限于网络请求,它还可以应用于文件IO、数据库操作等多种场景,帮助我们充分利用多核CPU的计算能力,提升程序的并发性能。掌握asyncio库,将是你迈向高效并发编程的重要一步。在这个异步编程的新篇章中,让我们携手前行,探索更多的可能性!

相关文章
|
9天前
|
机器学习/深度学习 存储 数据挖掘
Python图像处理实用指南:PIL库的多样化应用
本文介绍Python中PIL库在图像处理中的多样化应用,涵盖裁剪、调整大小、旋转、模糊、锐化、亮度和对比度调整、翻转、压缩及添加滤镜等操作。通过具体代码示例,展示如何轻松实现这些功能,帮助读者掌握高效图像处理技术,适用于图片美化、数据分析及机器学习等领域。
49 20
|
1月前
|
XML JSON 数据库
Python的标准库
Python的标准库
173 77
|
17天前
|
Python
深入理解 Python 中的异步操作:async 和 await
Python 的异步编程通过 `async` 和 `await` 关键字处理 I/O 密集型任务,如网络请求和文件读写,显著提高性能。`async` 定义异步函数,返回 awaitable 对象;`await` 用于等待这些对象完成。本文介绍异步编程基础、`async` 和 `await` 的用法、常见模式(并发任务、异常处理、异步上下文管理器)及实战案例(如使用 aiohttp 进行异步网络请求),帮助你高效利用系统资源并提升程序性能。
32 7
|
18天前
|
数据采集 消息中间件 Java
python并发编程:什么是并发编程?python对并发编程有哪些支持?
并发编程能够显著提升程序的效率和响应速度。例如,网络爬虫通过并发下载将耗时从1小时缩短至20分钟;APP页面加载时间从3秒优化到200毫秒。Python支持多线程、多进程、异步I/O和协程等并发编程方式,适用于不同场景。线程通信方式包括共享变量、消息传递和同步机制,如Lock、Queue等。Python的并发编程特性使其在处理大规模数据和高并发访问时表现出色,成为许多领域的首选语言。
|
18天前
|
SQL 网络协议 安全
Python异步: 什么时候使用异步?
Asyncio 是 Python 中用于异步编程的库,适用于协程、非阻塞 I/O 和异步任务。使用 Asyncio 的原因包括:1) 使用协程实现轻量级并发;2) 采用异步编程范式提高效率;3) 实现非阻塞 I/O 提升 I/O 密集型应用性能。然而,Asyncio 并不适合所有场景,特别是在 CPU 密集型任务或已有线程/进程方案的情况下。选择 Asyncio 应基于项目需求和技术优势。
|
1月前
|
XML JSON 数据库
Python的标准库
Python的标准库
56 11
|
1月前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
82 8
|
1月前
|
安全 API 文件存储
Yagmail邮件发送库:如何用Python实现自动化邮件营销?
本文详细介绍了如何使用Yagmail库实现自动化邮件营销。Yagmail是一个简洁强大的Python库,能简化邮件发送流程,支持文本、HTML邮件及附件发送,适用于数字营销场景。文章涵盖了Yagmail的基本使用、高级功能、案例分析及最佳实践,帮助读者轻松上手。
52 4
|
1月前
|
人工智能 数据可视化 数据挖掘
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!
|
1月前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。