NumPy 教程 之 NumPy 教程 5

简介: NumPy 是 Python 的科学计算库,不包含在标准发行版中。安装推荐使用 Anaconda、Enthought Canopy、Python(x,y)、WinPython 或 Pyzo 等预装包的发行版,或通过 pip。在命令行运行 `pip3 install --user numpy scipy matplotlib`(可选清华镜像加速)。Linux 用户可使用apt或dnf。验证安装是否成功,可在Python环境中尝试 `from numpy import *; eye(4)`,若输出对角矩阵则安装成功。

NumPy 教程 之 NumPy 教程 5

NumPy 教程

NumPy 安装

Python 官网上的发行版是不包含 NumPy 模块的。

我们可以使用以下几种方法来安装。

1、使用已有的发行版本

对于许多用户,尤其是在 Windows 上,最简单的方法是下载以下的 Python 发行版,它们包含了所有的关键包(包括 NumPy,SciPy,matplotlib,IPython,SymPy 以及 Python 核心自带的其它包):

Anaconda: 免费 Python 发行版,用于进行大规模数据处理、预测分析,和科学计算,致力于简化包的管理和部署。支持 Linux, Windows 和 Mac 系统。
Enthought Canopy: 提供了免费和商业发行版。持 Linux, Windows 和 Mac 系统。
Python(x,y): 免费的 Python 发行版,包含了完整的 Python 语言开发包 及 Spyder IDE。支持 Windows,仅限 Python 2 版本。
WinPython: 另一个免费的 Python 发行版,包含科学计算包与 Spyder IDE。支持 Windows。
Pyzo: 基于 Anaconda 的免费发行版本及 IEP 的交互开发环境,超轻量级。 支持 Linux, Windows 和 Mac 系统。

2、使用 pip 安装

安装 NumPy 最简单的方法就是使用 pip 工具:

pip3 install --user numpy scipy matplotlib

--user 选项可以设置只安装在当前的用户下,而不是写入到系统目录。

默认情况使用国外线路,国外太慢,我们使用清华的镜像就可以:

pip3 install numpy scipy matplotlib -i https://pypi.tuna.tsinghua.edu.cn/simple

Linux 下安装

Ubuntu & Debian

sudo apt-get install python3-numpy python3-scipy python3-matplotlib ipython ipython-notebook python-pandas python-sympy python-nose
CentOS/Fedora

sudo dnf install numpy scipy python-matplotlib ipython python-pandas sympy python-nose atlas-devel

Mac 系统

Mac 系统的 Homebrew 不包含 NumPy 或其他一些科学计算包,所以可以使用以下方式来安装:

pip3 install numpy scipy matplotlib -i https://pypi.tuna.tsinghua.edu.cn/simple

安装验证

测试是否安装成功:

from numpy import *
eye(4)
array([[1., 0., 0., 0.],
[0., 1., 0., 0.],
[0., 0., 1., 0.],
[0., 0., 0., 1.]])

from numpy import * 为导入 numpy 库。

eye(4) 生成对角矩阵。

目录
相关文章
|
3月前
|
Python
NumPy 教程 之 NumPy 矩阵库(Matrix) 4
矩阵是由行和列构成的矩形数组,其元素可以是数字、符号或数学表达式。
35 4
|
3月前
|
Python
NumPy 教程 之 NumPy 矩阵库(Matrix) 2
不同于ndarray,matlib函数生成的是矩阵形式。教程中详细解释了矩阵的概念,并介绍了转置矩阵的实现方式,使用T属性或函数实现。此外,还展示了如何利用`matlib.empty()`创建指定形状的新矩阵,并可选择数据类型及顺序。最后通过示例演示了矩阵填充随机数据的方法。
36 3
|
3月前
|
数据可视化 Python
NumPy 教程 之 NumPy Matplotlib 7
使用Python的绘图库Matplotlib与NumPy结合进行数据可视化,提供Matplotlib作为MatLab开源替代方案的有效方法,以及如何利用plt()函数将数据转换成直观的直方图示例。
42 11
|
3月前
|
Python
NumPy 教程 之 NumPy Matplotlib 6
Matplotlib 是一个强大的 Python 绘图库,能与 NumPy 协同工作,提供类似 MatLab 的开源替代方案,并支持 PyQt 和 wxPython 等图形工具包。通过 `numpy.histogram()` 函数示例,展示了如何创建数据频率分布图,该函数接受输入数组和 bin 参数,生成对应频率的直方图。示例代码及输出清晰展示了 bin 的边界与对应频率的关系。
35 11
|
3月前
|
Python
NumPy 教程 之 NumPy Matplotlib 4
使用 Python 的绘图库 Matplotlib,结合 NumPy,生成各种图形,作为 MatLab 的开源替代方案。您将学习到如何用 matplotlib 和 NumPy 包来创建正弦波图形,以及如何在同一图中利用 subplot() 函数组织和展示不同的子图,例如同时绘制正弦和余弦曲线。通过实际代码示例,加深对这些功能的理解。
44 12
|
3月前
|
Python
NumPy 教程 之 NumPy Matplotlib 3
使用Python的绘图库Matplotlib与NumPy结合,创建有效的MatLab开源替代方案。它还支持与PyQt和wxPython等图形工具包搭配使用。通过向`plot()`函数添加特定格式字符串,可以展示离散值而非线性图。提供了多种线型和标记选项,例如实线`-`、虚线`--`、点标记`.`等,以及颜色缩写如蓝色`b`、绿色`g`等。示例代码展示了如何用圆点表示数据点而非线条。
41 10
|
3月前
|
Python
NumPy 教程 之 NumPy Matplotlib 5
Matplotlib 是 Python 的绘图库,配合 NumPy 可作为 MatLab 的开源替代方案,并能与 PyQt 和 wxPython 等图形工具包共同使用。本教程重点讲解 `bar()` 函数用于生成条形图的方法,并通过实例展示了如何创建并显示两组数据的条形图。
37 7
|
3月前
|
存储 Python
NumPy 教程 之 NumPy IO 1
NumPy IO 教程介绍了如何使用 NumPy 读写文本及二进制数据。教程覆盖了 `.npy` 和 `.npz` 格式的文件操作,其中 `save()` 和 `load()` 函数用于单个数组的存取,而 `savez()` 则可以保存多个数组。文本文件处理则由 `loadtxt()` 和 `savetxt()` 完成。通过示例展示了 `numpy.save()` 函数的具体用法,并解释了其参数含义,如文件名、数组对象以及序列化选项等。
44 10
|
3月前
|
Serverless Python
NumPy 教程 之 NumPy 线性代数 7
NumPy 的 `linalg` 库提供了丰富的线性代数功能,如点积、矩阵乘法、求解线性方程等。`numpy.linalg.inv()` 用于计算矩阵的乘法逆矩阵,即找到满足 `AB=BA=E` 的矩阵 `B`,其中 `E` 是单位矩阵。示例展示了如何对矩阵 `A` 计算其逆矩阵 `A^(-1)` 并求解线性方程 `A^(-1)B`,得到向量 `[5, 3, -2]` 作为解。
53 10
|
3月前
|
索引 Python
NumPy 教程 之 NumPy 线性代数 4
NumPy 的线性代数库 `linalg` 提供了丰富的线性代数功能,如点积(`dot`)、向量点积(`vdot`)、内积(`inner`)、矩阵积(`matmul`)、行列式(`determinant`)、求解线性方程(`solve`)和矩阵逆(`inv`)。其中,`numpy.matmul` 用于计算两个数组的矩阵乘积,支持多维数组操作。
37 11