NumPy 教程 之 NumPy Matplotlib 4

简介: 使用 Python 的绘图库 Matplotlib,结合 NumPy,生成各种图形,作为 MatLab 的开源替代方案。您将学习到如何用 matplotlib 和 NumPy 包来创建正弦波图形,以及如何在同一图中利用 subplot() 函数组织和展示不同的子图,例如同时绘制正弦和余弦曲线。通过实际代码示例,加深对这些功能的理解。

NumPy 教程 之 NumPy Matplotlib 4

NumPy Matplotlib

Matplotlib 是 Python 的绘图库。 它可与 NumPy 一起使用,提供了一种有效的 MatLab 开源替代方案。 它也可以和图形工具包一起使用,如 PyQt 和 wxPython。

绘制正弦波

以下实例使用 matplotlib 生成正弦波图。

实例

import numpy as np
import matplotlib.pyplot as plt

计算正弦曲线上点的 x 和 y 坐标

x = np.arange(0, 3 * np.pi, 0.1)
y = np.sin(x)
plt.title("sine wave form")

使用 matplotlib 来绘制点

plt.plot(x, y)
plt.show()

subplot()

subplot() 函数允许你在同一图中绘制不同的东西。

以下实例绘制正弦和余弦值:

实例

import numpy as np
import matplotlib.pyplot as plt

计算正弦和余弦曲线上的点的 x 和 y 坐标

x = np.arange(0, 3 * np.pi, 0.1)
y_sin = np.sin(x)
y_cos = np.cos(x)

建立 subplot 网格,高为 2,宽为 1

激活第一个 subplot

plt.subplot(2, 1, 1)

绘制第一个图像

plt.plot(x, y_sin)
plt.title('Sine')

将第二个 subplot 激活,并绘制第二个图像

plt.subplot(2, 1, 2)
plt.plot(x, y_cos)
plt.title('Cosine')

展示图像

plt.show()

目录
相关文章
|
1天前
|
Python
Matplotlib 教程 之 Matplotlib 绘图线 5
自定义绘图线样式,包括线型、颜色和粗细等属性。通过 `color` 或 `c` 参数可设定线的颜色,支持多种颜色标记(如 'r' 表示红色)及自定义颜色(如 'SeaGreen')。示例展示了如何应用自定义颜色绘制图形。
20 6
|
2天前
|
Python
Matplotlib 教程 之 Matplotlib 绘图线 3
Matplotlib 中自定义线条样式,包括线条类型、颜色和大小等属性。通过 `color` 参数或其简写 `c`,可以设置线条颜色,支持预设颜色标记(如 'r' 表示红色)及自定义颜色(如 SeaGreen)。示例展示了使用红色线条绘制数组数据的方法。
9 1
|
2天前
|
Python
Matplotlib 教程 之 Matplotlib 绘图线 2
Matplotlib教程之绘图线篇的第二部分,主要介绍如何自定义绘制线的样式,包括线型、颜色及粗细等属性。重点讲解了使用`linestyle`参数或其简写`ls`来设置不同类型的线条:实线、点虚线、破折线、点划线以及不显示线。并通过一个具体示例展示了如何应用点划线。
11 1
|
3天前
|
Python
Matplotlib 教程 之 Matplotlib 绘图线 1
本教程介绍如何使用 Matplotlib 自定义绘图中的线条样式,包括线的类型、颜色和大小等属性。通过设定 `linestyle` 参数,可以轻松实现实线、点虚线、破折线及点划线等多种样式。示例代码展示了如何绘制点虚线。
10 1
|
3天前
|
Python
Matplotlib 教程 之 Matplotlib 绘图标记 9
在本教程中,我们将探讨如何使用 Matplotlib 的 `plot()` 方法中的 `marker` 参数来自定义图表标记。您可以选择不同的线类型(如实线 `'-'`、虚线 `':'` 等),以及颜色类型(如红色 `'r'`、绿色 `'g'` 等)。同时,通过调整 `markersize (ms)`、`markerfacecolor (mfc)` 和 `markeredgecolor (mec)` 参数,可以定制标记的大小和颜色。
8 1
|
12天前
|
数据可视化 Python
NumPy 教程 之 NumPy Matplotlib 7
使用Python的绘图库Matplotlib与NumPy结合进行数据可视化,提供Matplotlib作为MatLab开源替代方案的有效方法,以及如何利用plt()函数将数据转换成直观的直方图示例。
32 11
|
12天前
|
Python
NumPy 教程 之 NumPy Matplotlib 6
Matplotlib 是一个强大的 Python 绘图库,能与 NumPy 协同工作,提供类似 MatLab 的开源替代方案,并支持 PyQt 和 wxPython 等图形工具包。通过 `numpy.histogram()` 函数示例,展示了如何创建数据频率分布图,该函数接受输入数组和 bin 参数,生成对应频率的直方图。示例代码及输出清晰展示了 bin 的边界与对应频率的关系。
27 11
|
11天前
|
API Python
Matplotlib 教程 之 Matplotlib Pyplot 2
Matplotlib 的子库 Pyplot 提供了类似 MATLAB 的绘图 API,是常用的 2D 图表绘制模块。通过 `import matplotlib.pyplot as plt` 导入后,可使用如 `plot()`, `scatter()`, `bar()`, `hist()`, `pie()`, `imshow()` 和 `subplots()` 等函数来轻松生成并调整图表。其中 `plot()` 用于绘制线图和散点图,接受 `x` 和 `y` 数据及可选格式参数 `fmt`。
22 8
|
6天前
|
Python
Matplotlib 教程 之 Matplotlib 绘图标记 3
这段Matplotlib教程展示了如何通过`plot()`方法的`marker`参数来自定义图表标记,为数据点添加独特的视觉风格。例如,通过设置`marker = '*'`,可以使每个数据点显示为星形标记。这在需要对坐标轴进行特殊标注时尤为有用。下面的示例代码生成了一个带有星形标记的简单折线图。
13 1
|
8天前
|
API Python
Matplotlib 教程 之 Matplotlib Pyplot 8
Matplotlib教程之Matplotlib Pyplot第8部分介绍了Pyplot子库,其提供类似MATLAB的绘图API,常用于绘制2D图表。通过导入`matplotlib.pyplot`并设置别名`plt`来使用其功能,如`plot()`、`scatter()`、`bar()`等。此外还支持颜色、线型及标记参数,示例展示了如何绘制正弦和余弦图形。
11 2
下一篇
无影云桌面