Python实现Stacking分类模型(RandomForestClassifier、ExtraTreesClassifier、AdaBoostClassifier、GradientBoostingClassifier、SVC)项目实战

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
简介: Python实现Stacking分类模型(RandomForestClassifier、ExtraTreesClassifier、AdaBoostClassifier、GradientBoostingClassifier、SVC)项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

image.png

image.png

1.项目背景

在大数据时代,我们终于拥有了算法所需要的海量数据。如果把机器学习比作工业革命时的蒸汽机,那么数据就是燃料。有了燃料,机器才能够运转。其次,在硬件方面,随着存储能力、计算能力的增强,以及云服务、GPU(专为执行复杂的数学和几何计算而设计的处理器)等的出现,我们几乎能够随意构建任何深度模型(model)。Stacking集成学习方法可以将多种单一模型以一定的方式组合起来,它可以结合各个单项预测模型的优点,更好地进行预测。

Stacking集成学习方法最初由Wolpert于1992年提出。作为一种新兴的算法,它在不同领域均有应用,并且取得了较为不错的结果。Stacking的特别之处在于,它可以融合不同种类的模型。在解决分类问题时,以一个层数为2的Stacking集成框架为例,一般地,框架的第一层由多个基分类器组成,各基分类器的输入均为训练数据,框架的第二层是元分类器,元分类器的训练数据由第一层基分类器的输出和原始训练数据的标签组成,元分类器经过训练后,就可以得到完整的Stacking集成模型

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下

 

编号 

变量名称

描述

1

PassengerId

乘客编号

2

Survived

是否存活 目标变量 1-生存  0-死亡

3

Pclass

客舱等级 1=1等舱,2=2等舱,3=3等舱

4

Name

乘客姓名

5

Sex

乘客性别(Sex):男性male,女性female

6

Age

年龄

7

SibSp

同代直系亲属人数

8

Parch

不同代直系亲属人数

9

Ticket

船票编号

10

Fare

船票价格

11

Cabin

客舱号

12

Embarked

登船港口

出发地点:S=英国南安普顿Southampton

途径地点1:C=法国 瑟堡市Cherbourg

途径地点2:Q=爱尔兰 昆士敦Queenstown

数据详情如下(部分展示):

image.png

3.数据预处理 

真实数据中可能包含了大量的缺失值和噪音数据或人工录入错误导致有异常点存在,非常不利于算法模型的训练。数据清洗的结果是对各种脏数据进行对应方式的处理,得到标准的、干净的、连续的数据,提供给数据统计、数据挖掘等使用。数据预处理通常包含数据清洗、归约、聚合、转换、抽样等方式,数据预处理质量决定了后续数据分析挖掘及建模工作的精度和泛化价值。以下简要介绍数据预处理工作中主要的预处理方法:

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前6行数据:

image.png

关键代码:

image.png

3.2对特征Cabin进行处理

使用Pandas工具的type()方法来查类型是否为float类型,来判断乘客是否有客舱号,关键代码:

image.png

3.3构建IsAlone特征

通过SibSp Parch 特征的结合,来构建新的特征FamilySize;通过FamilySize特征来构建IsAlone特征;关键代码如下:

image.png

3.4特征EmbarkedFare缺失数据处理

Embarked特征用’S’来填充空值, Fare特征用中位数来填充空值,关键代码如下:

image.png

image.png

3.5构建CategoricalAge特征

通过年龄的平均值、标准差来构建年龄分段特征,关键代码如下:

image.png

3.6构建Title特征

对乘客名字进行规范化处理,关键代码如下:

image.png

最后针对处理后的特征进行查看,结果如下:

image.png

4.探索性数据分析

4.1 相关性分析

用Pandas工具的corr()方法 matplotlib seaborn进行相关性分析,结果如下:

image.png

通过上图可以看到,数据项之间正值是正相关/负值是负相关,数值越大 相关性越强。

4.2 每个特征生成配对图

image.png

这种配对图,可以看到每两个特征之间 针对乘客是否生存形成对比,方便观察特征。例如:乘客在2等舱且年龄越小 越容易生存。

5.特征工程

5.1 建立特征数据和标签数据

Survived为标签数据,除 Survived之外的为特征数据。关键代码如下:

image.png

6.构建Stacking分类模型

主要使用RandomForestClassifier、ExtraTreesClassifier、AdaBoostClassifier、GradientBoostingClassifier、SVC算法,用于目标分类。第一层模型:使用上面5种算法进行建模、拟合、预测;第二层模型:本次分类模型是使用前5个模型的预测结果作为特征,测试集的标签作为标签,以XGBClassifier算法作为基分类器,进行建模、拟合、预测。

6.1第一层模型参数

编号

模型名称

参数

1

RandomForestClassifier

n_jobs=-1

2

n_estimators=500

3

warm_start=True

4

max_depth=6

5

min_samples_leaf=2

6

max_features='sqrt'

7

verbose: 0

8

ExtraTreesClassifier

n_jobs=-1

9

n_estimators= 500

10

max_depth= 8

11

min_samples_leaf= 2

12

verbose= 0

13

AdaBoostClassifier

n_estimators= 500

14

learning_rate= 0.75

15

GradientBoostingClassifier

n_estimators= 500

16

max_depth= 5

17

min_samples_leaf= 2

18

verbose= 0

19

SVC

kernel= 'linear',

20

C= 0.025

关键代码如下: 

image.png

6.2第一层模型特征重要性

image.png

通过上图可以看出,随机森林模型特征重要性排名为Title、Sex等。

image.png

通过上图可以看出,极端随机树模型特征重要性排名为Sex、Title等。

image.png

通过上图可以看出,AdaBoost模型特征重要性排名为Name_length、Title等。

image.png

通过上图可以看出,Gradient Boost模型特征重要性排名为TitleName_length等。

image.png

通过上图可以看出,所有模型特征重要性排名为Name_length、Title、Sex等。

6.3 五种模型相关性分析

image.png

针对五种模型的预测结果进行相关性分析,通过上图可以看出大于0的为正相关 数值越大相关性越强;小于0的为负相关。 

6.4第二层模型参数

编号

模型名称

参数

1

XGBClassifier

n_estimators=2000

2

max_depth=4

3

min_child_weight=2

4

gamma=0.9

5

subsample=0.8

6

colsample_bytree=0.8

7

objective='binary:logistic'

8

nthread=-1

9

scale_pos_weight=1

关键代码如下:

image.png

7.模型评估

7.1评估指标及结果

评估指标主要包括准确率、查准率、查全率、F1分值等等。

模型名称

指标名称

指标值

测试集

Stacking分类模型

准确率

87.43%

查准率

86.15%

查全率

78.87%

F1分值

82.35%

从上表可以看出,准确率为87%  F1分值为82%,Stacking分类模型也相当不错。

关键代码如下: 

image.png

7.2 分类报告

Stacking分类模型分类报告:

image.png

从上图可以看到,分类类型为0的F1分值为0.90;分类类型为1的F1分值为0.82;整个模型的准确率为0.87.

7.3 ROC曲线

image.png

从上图可以看出AUC值为0.89,模型也相当不错。

8.结论与展望

综上所述,本文采用了Stacking分类模型,最终证明了我们提出的模型效果良好。准确率达到了87%,可用于日常生活中进行建模预测,以提高价值。

# 本次机器学习项目实战所需的资料,项目资源如下:
 
# 项目说明:
 
# 获取方式一:
 
# 项目实战合集导航:
 
https://docs.qq.com/sheet/DTVd0Y2NNQUlWcmd6?tab=BB08J2
 
# 获取方式二:
 
链接:https://pan.baidu.com/s/1Ngc1nNEBhZGy6Zii4aJyHQ 
提取码:0ke1

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
6月前
|
机器学习/深度学习 数据采集 算法
Python实现ISSA融合反向学习与Levy飞行策略的改进麻雀优化算法优化支持向量机回归模型(SVR算法)项目实战
Python实现ISSA融合反向学习与Levy飞行策略的改进麻雀优化算法优化支持向量机回归模型(SVR算法)项目实战
|
6月前
|
机器学习/深度学习 数据采集 算法
Python实现WOA智能鲸鱼优化算法优化支持向量机分类模型(SVC算法)项目实战
Python实现WOA智能鲸鱼优化算法优化支持向量机分类模型(SVC算法)项目实战
|
6月前
|
机器学习/深度学习 数据采集 算法
Python实现ISSA融合反向学习与Levy飞行策略的改进麻雀优化算法优化支持向量机分类模型(SVC算法)项目实战
Python实现ISSA融合反向学习与Levy飞行策略的改进麻雀优化算法优化支持向量机分类模型(SVC算法)项目实战
|
28天前
|
人工智能 数据可视化 数据挖掘
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!
|
27天前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
16天前
|
Unix Linux 程序员
[oeasy]python053_学编程为什么从hello_world_开始
视频介绍了“Hello World”程序的由来及其在编程中的重要性。从贝尔实验室诞生的Unix系统和C语言说起,讲述了“Hello World”作为经典示例的起源和流传过程。文章还探讨了C语言对其他编程语言的影响,以及它在系统编程中的地位。最后总结了“Hello World”、print、小括号和双引号等编程概念的来源。
102 80
|
2月前
|
存储 索引 Python
Python编程数据结构的深入理解
深入理解 Python 中的数据结构是提高编程能力的重要途径。通过合理选择和使用数据结构,可以提高程序的效率和质量
149 59
|
5天前
|
Python
[oeasy]python055_python编程_容易出现的问题_函数名的重新赋值_print_int
本文介绍了Python编程中容易出现的问题,特别是函数名、类名和模块名的重新赋值。通过具体示例展示了将内建函数(如`print`、`int`、`max`)或模块名(如`os`)重新赋值为其他类型后,会导致原有功能失效。例如,将`print`赋值为整数后,无法再用其输出内容;将`int`赋值为整数后,无法再进行类型转换。重新赋值后,这些名称失去了原有的功能,可能导致程序错误。总结指出,已有的函数名、类名和模块名不适合覆盖赋新值,否则会失去原有功能。如果需要使用类似的变量名,建议采用其他命名方式以避免冲突。
27 14
|
14天前
|
分布式计算 大数据 数据处理
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
49 2
|
28天前
|
小程序 开发者 Python
探索Python编程:从基础到实战
本文将引导你走进Python编程的世界,从基础语法开始,逐步深入到实战项目。我们将一起探讨如何在编程中发挥创意,解决问题,并分享一些实用的技巧和心得。无论你是编程新手还是有一定经验的开发者,这篇文章都将为你提供有价值的参考。让我们一起开启Python编程的探索之旅吧!
46 10