Python实现WOA智能鲸鱼优化算法优化支持向量机分类模型(SVC算法)项目实战

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
简介: Python实现WOA智能鲸鱼优化算法优化支持向量机分类模型(SVC算法)项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

image.png

image.png

1.项目背景

鲸鱼优化算法 (whale optimization algorithm,WOA)是 2016 年由澳大利亚格里菲斯大学的Mirjalili 等提出的一种新的群体智能优化算法,其优点在于操作简单,调整的参数少以及跳出局部最优的能力强。

本项目通过WOA鲸鱼优化算法优化支持向量机分类模型。

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下

编号 

变量名称

描述

1

x1

 

2

x2

 

3

x3

 

4

x4

 

5

x5

 

 

15

x15

 

16

y

标签

数据详情如下(部分展示):

image.png

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

image.png

关键代码:

image.png

3.2数据缺失查看

使用Pandas工具的info()方法查看数据信息:

image.png

从上图可以看到,总共有16个变量,数据中无缺失值。

关键代码:

image.png

 

3.3数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

image.png

关键代码如下:

image.png

4.探索性数据分析

4.1 y变量柱状图

用Matplotlib工具的plot()方法绘制柱状图:

image.png

4.2 y=1样本x1变量分布直方图

用Matplotlib工具的hist()方法绘制直方图:

image.png

4.3 相关性分析

image.png

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。

5.特征工程

5.1 建立特征数据和标签数据

关键代码如下:

image.png

5.2 数据集拆分

通过train_test_split()方法按照80%训练集、20%验证集进行划分,关键代码如下:

image.png

6.构建WOA鲸鱼优化算法优化支持向量机分类模型

主要使用WOA鲸鱼优化算法优化SVC算法,用于目标分类。

6.1 算法介绍

说明:算法介绍来源于网络,供参考。

鲸鱼优化算法(whale optimization algorithm,WOA)是模仿座头鲸的狩猎行为进而提出的一种新型启发式优化算法。在 WOA 算法中,每只座头鲸的位置代表一个可行解。在海洋活动中,座头鲸有着一种特殊的狩猎方法,这种觅食行为称为bubble-net 捕食策略,其狩猎行为如图所示:

image.png

l 包围猎物

座头鲸在狩猎时要包围猎物,为了描述这种行为,Mirjalili 提出了下面的数学模型:

image.png

l 狩猎行为

根据座头鲸的狩猎行为,它是以螺旋运动游向猎物,故狩猎行为的数学模型如下:

image.png

l 搜索猎物

在搜索猎物时,其数学模型如下:

image.png

l 算法流程

1)初始化参数:即鲸鱼种群规模大小SN,最大迭代次数Tmax

2)算法初始化鲸鱼种群的位置;

3)计算每一头鲸鱼相应的适应度值,根据适应度值的大小排序,并选取SN个作为初始种群;

4)计算出SN个个体适应度值的大小,找出适应度值最小的个体位置作为最优位置;

5)更新下一代的位置;

6)若达到终止条件,则输出最优个体,即算法找到的最优解;否则,返回步骤(4)。

6.2 WOA鲸鱼优化算法寻找最优参数值

关键代码:

image.png

 

每次迭代的过程数据:

image.png

image.png

image.png

image.png

image.png

image.png

image.png

image.png

image.png

image.png

 

最优参数:

image.png

最优参数,取的是最优一次迭代输出的C数值;当然了,也可以增加迭代次数看看最后模型评估输出的数值,不断地进行项目的调试,使之达到自己想要的结果。

6.3 最优参数模型预测

这里通过最优参数模型对测试数据集进行预测。

关键代码:

image.png

7.模型评估

7.1评估指标及结果 

评估指标主要包括准确率、查准率、查全率、F1分值等等。

模型名称

指标名称

指标值

测试集

支持向量机分类模型(鲸鱼优化算法最优参数值)

准确率

0.8400

查准率

0.9412

查全率

0.6957

F1分值

0.8

从上表可以看出,F1分值为0.8,说明鲸鱼优化的模型效果良好。

关键代码如下:

image.png

7.2 分类报告

image.png

从上图可以看出,分类为0的F1分值为0.87;分类为1的F1分值为0.80

7.3 混淆矩阵

image.png

从上图可以看出,实际为0预测不为0的 有7个样本;实际为1预测不为1的 有1个样本,模型预测效果良好。

 

8.结论与展望

综上所述,本文采用了WOA鲸鱼优化算法寻找支持向量机SVC算法的最优参数值来构建分类模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的建模工作。


# 本次机器学习项目实战所需的资料,项目资源如下:
 
# 项目说明:
 
# 获取方式一:
 
# 项目实战合集导航:
 
https://docs.qq.com/sheet/DTVd0Y2NNQUlWcmd6?tab=BB08J2
 
# 获取方式二:
 
链接:https://pan.baidu.com/s/19K7LyKUtCY6A8zArRkCWdg 
提取码:x7gz
相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
9天前
|
机器学习/深度学习 存储 算法
解锁文件共享软件背后基于 Python 的二叉搜索树算法密码
文件共享软件在数字化时代扮演着连接全球用户、促进知识与数据交流的重要角色。二叉搜索树作为一种高效的数据结构,通过有序存储和快速检索文件,极大提升了文件共享平台的性能。它依据文件名或时间戳等关键属性排序,支持高效插入、删除和查找操作,显著优化用户体验。本文还展示了用Python实现的简单二叉搜索树代码,帮助理解其工作原理,并展望了该算法在分布式计算和机器学习领域的未来应用前景。
|
25天前
|
监控 算法 安全
深度洞察内网监控电脑:基于Python的流量分析算法
在当今数字化环境中,内网监控电脑作为“守城卫士”,通过流量分析算法确保内网安全、稳定运行。基于Python的流量分析算法,利用`scapy`等工具捕获和解析数据包,提取关键信息,区分正常与异常流量。结合机器学习和可视化技术,进一步提升内网监控的精准性和效率,助力企业防范潜在威胁,保障业务顺畅。本文深入探讨了Python在内网监控中的应用,展示了其实战代码及未来发展方向。
|
5天前
|
监控 算法 安全
内网桌面监控软件深度解析:基于 Python 实现的 K-Means 算法研究
内网桌面监控软件通过实时监测员工操作,保障企业信息安全并提升效率。本文深入探讨K-Means聚类算法在该软件中的应用,解析其原理与实现。K-Means通过迭代更新簇中心,将数据划分为K个簇类,适用于行为分析、异常检测、资源优化及安全威胁识别等场景。文中提供了Python代码示例,展示如何实现K-Means算法,并模拟内网监控数据进行聚类分析。
28 10
|
23天前
|
存储 算法 安全
控制局域网上网软件之 Python 字典树算法解析
控制局域网上网软件在现代网络管理中至关重要,用于控制设备的上网行为和访问权限。本文聚焦于字典树(Trie Tree)算法的应用,详细阐述其原理、优势及实现。通过字典树,软件能高效进行关键词匹配和过滤,提升系统性能。文中还提供了Python代码示例,展示了字典树在网址过滤和关键词屏蔽中的具体应用,为局域网的安全和管理提供有力支持。
50 17
|
2月前
|
人工智能 数据可视化 数据挖掘
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!
|
2月前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
2月前
|
Unix Linux 程序员
[oeasy]python053_学编程为什么从hello_world_开始
视频介绍了“Hello World”程序的由来及其在编程中的重要性。从贝尔实验室诞生的Unix系统和C语言说起,讲述了“Hello World”作为经典示例的起源和流传过程。文章还探讨了C语言对其他编程语言的影响,以及它在系统编程中的地位。最后总结了“Hello World”、print、小括号和双引号等编程概念的来源。
126 80
|
21天前
|
存储 缓存 Java
Python高性能编程:五种核心优化技术的原理与Python代码
Python在高性能应用场景中常因执行速度不及C、C++等编译型语言而受质疑,但通过合理利用标准库的优化特性,如`__slots__`机制、列表推导式、`@lru_cache`装饰器和生成器等,可以显著提升代码效率。本文详细介绍了这些实用的性能优化技术,帮助开发者在不牺牲代码质量的前提下提高程序性能。实验数据表明,这些优化方法能在内存使用和计算效率方面带来显著改进,适用于大规模数据处理、递归计算等场景。
58 5
Python高性能编程:五种核心优化技术的原理与Python代码
|
3月前
|
存储 索引 Python
Python编程数据结构的深入理解
深入理解 Python 中的数据结构是提高编程能力的重要途径。通过合理选择和使用数据结构,可以提高程序的效率和质量
171 59
|
2月前
|
Python
[oeasy]python055_python编程_容易出现的问题_函数名的重新赋值_print_int
本文介绍了Python编程中容易出现的问题,特别是函数名、类名和模块名的重新赋值。通过具体示例展示了将内建函数(如`print`、`int`、`max`)或模块名(如`os`)重新赋值为其他类型后,会导致原有功能失效。例如,将`print`赋值为整数后,无法再用其输出内容;将`int`赋值为整数后,无法再进行类型转换。重新赋值后,这些名称失去了原有的功能,可能导致程序错误。总结指出,已有的函数名、类名和模块名不适合覆盖赋新值,否则会失去原有功能。如果需要使用类似的变量名,建议采用其他命名方式以避免冲突。
51 14

热门文章

最新文章