Python实现ISSA融合反向学习与Levy飞行策略的改进麻雀优化算法优化支持向量机分类模型(SVC算法)项目实战

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
简介: Python实现ISSA融合反向学习与Levy飞行策略的改进麻雀优化算法优化支持向量机分类模型(SVC算法)项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

image.png

image.png

1.项目背景

改进的麻雀搜索优化算法针对麻雀搜索算法(SSA)在求解目标函数最优解时,种群多样性不丰富,易陷于局部最优和多维函数求解精度差等问题,提出改进的麻雀搜索算法(ISSA)。首先,利用反向学习策略初始化种群,增加种群多样性;然后,对步长因子进行动态调整,提高算法的求解精度;最后,对侦查预警的麻雀位置更新公式引入 Levy 飞行,提高算法寻优能力和跳出局部极值的能力。

本项目通过ISSA改进的麻雀搜索算法优化支持向量机分类模型。  

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下

编号 

变量名称

描述

1

x1

 

2

x2

 

3

x3

 

4

x4

 

5

x5

 

6

x6

 

7

x7

 

8

x8

 

9

x9

 

10

y

因变量

数据详情如下(部分展示):

image.png

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

image.png

关键代码:

image.png

3.2数据缺失查看

使用Pandas工具的info()方法查看数据信息:

image.png

从上图可以看到,总共有10个变量,数据中无缺失值,共1000条数据。

关键代码:

image.png

3.3数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

image.png

关键代码如下:

image.png

4.探索性数据分析

4.1 y变量柱状图

用Matplotlib工具的plot()方法绘制柱状图:

image.png

4.2 y=1样本x1变量分布直方图

用Matplotlib工具的hist()方法绘制直方图:

image.png

4.3 相关性分析

image.png

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。

5.特征工程  

5.1 建立特征数据和标签数据

关键代码如下:

image.png

5.2 数据集拆分

通过train_test_split()方法按照80%训练集、20%验证集进行划分,关键代码如下:

image.png

6.构建ISSA改进的麻雀搜索算法优化支持向量机分类模型

主要使用ISSA改进的麻雀搜索算法优化SVC算法,用于目标分类。 

6.1 支持向量机构建模型

模型名称

指标名称

指标值

测试集

支持向量机分类模型(未使用改进的麻雀优化算法模型评估)

准确率

0.875

查准率

0.9111

查全率

0.8282

F1分值

0.8677

通过上表可以看到,未使用改进的麻雀优化算法模型的F1分值为0.8677

6.2 ISSA改进的麻雀搜索算法寻找最优参数值

关键代码:

image.png

 

每次迭代的过程数据和最优值:

image.png

6.3 最优参数构建模型 

这里通过最优参数构建支持向量机分类模型。

模型名称

模型参数

参数值

支持向量机分类模型

gamma

0.03125

C

0.1

 

7.模型评估

7.1评估指标及结果 

评估指标主要包括准确率、查准率、查全率、F1分值等等。

模型名称

指标名称

指标值

测试集

支持向量机分类模型(使用改进的麻雀搜索算法优化)

准确率

0.88

查准率

0.9310

查全率

0.8181

F1分值 

0.8709

从上表可以看出,F1分值为0.8709,比未使用的支持向量机模型的F1分为高一些,说明改进的麻雀搜索算法优化的的模型效果较好。

关键代码如下:

image.png

7.2 查看是否过拟合

image.png

从上图可以看出,训练集和测试集分值相当,无过拟合现象。

7.3 分类报告

  image.png

从上图可以看出,分类为0的F1分值为0.89;分类为1的F1分值为0.87

7.4 混淆矩阵

image.png

从上图可以看出,实际为0预测不为0的 有12个样本;实际为1预测不为1的 有9个样本,整体预测准确率还是可以接受的。

8.结论与展望

综上所述,本文采用了ISSA改进的麻雀搜索算法寻找支持向量机SVC算法的最优参数值来构建分类模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的建模工作。


# 本次机器学习项目实战所需的资料,项目资源如下:
 
# 项目说明:
 
# 获取方式一:
 
# 项目实战合集导航:
 
https://docs.qq.com/sheet/DTVd0Y2NNQUlWcmd6?tab=BB08J2
 
# 获取方式二:
 
链接:https://pan.baidu.com/s/1lBeQcLKj8ZGd721qwK1miQ 
提取码:314d
相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
1月前
|
存储 监控 算法
解析公司屏幕监控软件中 C# 字典算法的数据管理效能与优化策略
数字化办公的时代背景下,企业为维护信息安全并提升管理效能,公司屏幕监控软件的应用日益普及。此软件犹如企业网络的 “数字卫士”,持续记录员工电脑屏幕的操作动态。然而,伴随数据量的持续增长,如何高效管理这些监控数据成为关键议题。C# 中的字典(Dictionary)数据结构,以其独特的键值对存储模式和高效的操作性能,为公司屏幕监控软件的数据管理提供了有力支持。下文将深入探究其原理与应用。
44 4
|
14天前
|
网络协议 API 开发者
分析http.client与requests在Python中的性能差异并优化。
合理地选择 `http.client`和 `requests`库以及在此基础上优化代码,可以帮助你的Python网络编程更加顺利,无论是在性能还是在易用性上。我们通常推荐使用 `requests`库,因为它的易用性。对于需要大量详细控制的任务,或者对性能有严格要求的情况,可以考虑使用 `http.client`库。同时,不断优化并管理员连接、设定合理超时和重试都是提高网络访问效率和稳定性的好方式。
58 19
|
25天前
|
监控 算法 JavaScript
公司局域网管理视域下 Node.js 图算法的深度应用研究:拓扑结构建模与流量优化策略探析
本文探讨了图论算法在公司局域网管理中的应用,针对设备互联复杂、流量调度低效及安全监控困难等问题,提出基于图论的解决方案。通过节点与边建模局域网拓扑结构,利用DFS/BFS实现设备快速发现,Dijkstra算法优化流量路径,社区检测算法识别安全风险。结合WorkWin软件实例,展示了算法在设备管理、流量调度与安全监控中的价值,为智能化局域网管理提供了理论与实践指导。
49 3
|
3月前
|
存储 算法 安全
企业员工数据泄露防范策略:基于 C++ 语言的布隆过滤器算法剖析[如何防止员工泄密]
企业运营过程中,防范员工泄密是信息安全领域的核心议题。员工泄密可能致使企业核心数据、商业机密等关键资产的流失,进而给企业造成严重损失。为应对这一挑战,借助恰当的数据结构与算法成为强化信息防护的有效路径。本文专注于 C++ 语言中的布隆过滤器算法,深入探究其在防范员工泄密场景中的应用。
66 8
|
3月前
|
机器学习/深度学习 算法 调度
【强化学习】基于深度强化学习的微能源网能量管理与优化策略研究【Python】
本项目基于深度Q网络(DQN)算法,通过学习预测负荷、可再生能源输出及分时电价等信息,实现微能源网的能量管理与优化。程序以能量总线模型为基础,结合强化学习理论,采用Python编写,注释清晰,复现效果佳。内容涵盖微能源网系统组成、Q学习算法原理及其实现,并提供训练奖励曲线、发电单元功率、电网交互功率和蓄电池调度等运行结果图表,便于对照文献学习与应用。
|
3月前
|
缓存 并行计算 数据处理
全面提升Python性能的十三种优化技巧
通过应用上述十三种优化技巧,开发者可以显著提高Python代码的执行效率和性能。每个技巧都针对特定的性能瓶颈进行优化,从内存管理到并行计算,再到使用高效的数值计算库。这些优化不仅能提升代码的运行速度,还能提高代码的可读性和可维护性。希望这些技巧能帮助开发者在实际项目中实现更高效的Python编程。
278 22
|
3月前
|
存储 监控 算法
基于 Python 哈希表算法的员工上网管理策略研究
于当下数字化办公环境而言,员工上网管理已成为企业运营管理的关键环节。企业有必要对员工的网络访问行为予以监控,以此确保信息安全并提升工作效率。在处理员工上网管理相关数据时,适宜的数据结构与算法起着举足轻重的作用。本文将深入探究哈希表这一数据结构在员工上网管理场景中的应用,并借助 Python 代码示例展开详尽阐述。
66 3
|
4月前
|
关系型数据库 数据库 数据安全/隐私保护
云数据库实战:基于阿里云RDS的Python应用开发与优化
在互联网时代,数据驱动的应用已成为企业竞争力的核心。阿里云RDS为开发者提供稳定高效的数据库托管服务,支持多种数据库引擎,具备自动化管理、高可用性和弹性扩展等优势。本文通过Python应用案例,从零开始搭建基于阿里云RDS的数据库应用,详细演示连接、CRUD操作及性能优化与安全管理实践,帮助读者快速上手并提升应用性能。
|
11天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本内容展示了一种基于粒子群优化(PSO)与时间卷积神经网络(TCN)的时间序列预测方法。通过 MATLAB2022a 实现,完整程序运行无水印,核心代码附详细中文注释及操作视频。算法利用 PSO 优化 TCN 的超参数(如卷积核大小、层数等),提升非线性时间序列预测性能。TCN 结构包含因果卷积层与残差连接,结合 LSTM 构建混合模型,经多次迭代选择最优超参数,最终实现更准确可靠的预测效果,适用于金融、气象等领域。
|
8天前
|
算法 数据安全/隐私保护
基于Logistic-Map混沌序列的数字信息加解密算法matlab仿真,支持对文字,灰度图,彩色图,语音进行加解密
本项目实现了一种基于Logistic Map混沌序列的数字信息加解密算法,使用MATLAB2022A开发并包含GUI操作界面。支持对文字、灰度图像、彩色图像和语音信号进行加密与解密处理。核心程序通过调整Logistic Map的参数生成伪随机密钥序列,确保加密的安全性。混沌系统的不可预测性和对初值的敏感依赖性是该算法的核心优势。示例展示了彩色图像、灰度图像、语音信号及文字信息的加解密效果,运行结果清晰准确,且完整程序输出无水印。
基于Logistic-Map混沌序列的数字信息加解密算法matlab仿真,支持对文字,灰度图,彩色图,语音进行加解密

推荐镜像

更多