基于PSO粒子群优化的PID控制器参数整定算法matlab仿真

简介: 该文探讨了使用PSO(粒子群优化)算法优化PID控制器参数的方法。通过PSO迭代,不断调整PID控制器的Kp、Ki、Kd增益,以减小控制误差。文中提供了MATLAB2022a版本的核心代码,展示了参数优化过程及结果。系统仿真图像显示了参数随迭代优化的变化。PID控制器结合PSO算法能有效提升控制性能,适用于复杂系统的参数整定,未来研究可关注算法效率提升和应对不确定性。

1.课题概述
基于PSO粒子群优化的PID控制器参数整定。通过PSO不断的优化,使得PID控制器的控制反馈误差逐渐接近0,在完成优化迭代之后,对应的参数,即PID控制器的参数。

2.系统仿真结果

1.jpeg
2.jpeg

3.核心程序与模型
版本:MATLAB2022a

```for jj = 1: Iteration
jj

for j=1:Npop
    %速度更新
    Vs(j,:) = 0.75*Vs(j,:) + c1*rand*(gbest(j,:) - Pops(j,:)) + c2*rand*(zbest - Pops(j,:));

............................................................
%适应值
yfits(j,:) = func_fitness(Pops(j,:));

    %最优更新     
    if yfits(j) < fgbest(j)
       gbest(j,:) = Pops(j,:);
       fgbest(j) = yfits(j);
    end

    %最优更新
    if yfits(j) < fzbest
       zbest  = Pops(j,:);
       fzbest = yfits(j);
    end
end 
%保持最优值
y_fitness(1,jj) = fzbest;        
Kps(1,jj)       = zbest(1);
Kis(1,jj)       = zbest(2);
Kds(1,jj)       = zbest(3);

end

figure
plot(y_fitness,'b-o')
legend('最优个体适应值');
xlabel('迭代次数');
ylabel('适应值');

figure
subplot(311)
plot(Kps,'-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);
xlabel('迭代次数');
ylabel('参数值');
legend('Kp');
ylim([0,1100]);

subplot(312)
plot(Kis,'-mo',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.5,0.9,0.0]);
xlabel('迭代次数');
ylabel('参数值');
legend('Ki');
ylim([0,30]);

subplot(313)
plot(Kds,'-r>',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.9,0.0]);

xlabel('迭代次数');
ylabel('参数值');
legend('Kd');
ylim([0,500]);
27

```

4.系统原理简介
基于PSO(粒子群优化)算法的PID(比例-积分-微分)控制器参数整定是一种优化方法,用于自动调整PID控制器的参数(比例增益Kp、积分增益Ki和微分增益Kd),以达到最佳的控制性能。

4.1 PID控制器简介
PID控制器是一种广泛使用的控制算法,其输出由比例、积分和微分三个部分的线性组合构成。对于给定的系统误差e(t)(期望值与实际值之差),PID控制器的输出u(t)可以表示为:

0c14bce40227cbce301139d0cd7a438d_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

其中,( K_p )、( K_i ) 和 ( K_d ) 分别是比例、积分和微分增益。

4.2 PSO算法原理
PSO是一种基于群体智能的优化算法,通过模拟鸟群觅食行为中的社会信息共享机制来寻找问题的最优解。在PSO中,每个解被视为一个“粒子”,在搜索空间中以一定的速度和方向移动。每个粒子都有一个位置(代表解的值)和一个速度,以及一个由目标函数确定的适应度值。

粒子的速度和位置更新公式如下:

v(i)=v(i)w+c1rand(pbest(i)-x(i))+c2rand(gbest(i)-x(i))

x(i)=x(i)+v(i)

   其中,( v_{i}(t) ) 和 ( x_{i}(t) ) 分别是粒子i在时刻t的速度和位置;( pbest_{i} ) 是粒子i的个体历史最优位置;( gbest ) 是整个群体的全局最优位置;( w ) 是惯性权重;( c_1 ) 和 ( c_2 ) 是学习因子;( r_1 ) 和 ( r_2 ) 是[0,1]之间的随机数。

4.3 基于PSO的PID参数整定
在基于PSO的PID参数整定中,我们将PID控制器的参数(( K_p ), ( K_i ), ( K_d ))编码为粒子的位置向量。目标函数通常与控制系统的性能指标相关,如误差积分(IAE)、时间乘以误差绝对值积分(ITAE)等。优化目标是最小化这个性能指标。算法步骤如下:

初始化粒子群,包括粒子的位置(PID参数)、速度和适应度值。
评估每个粒子的适应度值,即使用当前PID参数对控制系统进行仿真,并计算性能指标。
更新每个粒子的个体历史最优位置(pbest)和全局最优位置(gbest)。
根据PSO的速度和位置更新公式更新粒子的速度和位置。
重复步骤2-4,直到满足终止条件(如达到最大迭代次数或性能指标足够好)。
输出全局最优位置作为整定后的PID参数。
基于PSO的PID参数整定方法结合了PSO算法的全局搜索能力和PID控制器的简单有效性,为复杂控制系统的参数优化提供了一种有效手段。未来研究方向包括改进PSO算法以提高搜索效率、考虑控制系统的不确定性和非线性因素、以及将该方法应用于更广泛的工业控制场景。

相关文章
|
10天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
15天前
|
机器学习/深度学习 算法 调度
基于ACO蚁群优化的VRPSD问题求解matlab仿真,输出规划路径结果和满载率
基于ACO蚁群优化的VRPSD问题求解MATLAB仿真,输出ACO优化的收敛曲线、规划路径结果及每条路径的满载率。在MATLAB2022a版本中运行,展示了优化过程和最终路径规划结果。核心程序通过迭代搜索最优路径,更新信息素矩阵,确保找到满足客户需求且总行程成本最小的车辆调度方案。
|
21天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
22天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
24天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真
### 算法简介 1. **算法运行效果图预览**:展示算法效果,完整程序运行后无水印。 2. **算法运行软件版本**:Matlab 2017b。 3. **部分核心程序**:完整版代码包含中文注释及操作步骤视频。 4. **算法理论概述**: - **MSER**:用于检测显著区域,提取图像中稳定区域,适用于光照变化下的交通标志检测。 - **HOG特征提取**:通过计算图像小区域的梯度直方图捕捉局部纹理信息,用于物体检测。 - **SVM**:寻找最大化间隔的超平面以分类样本。 整个算法流程图见下图。
|
9天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
11天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
10天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
10天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
27 3