基于LangChain手工测试用例生成工具

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: 使用Python的LangChain框架,测试工程师能自动化从需求文档生成思维导图。代码示例演示了如何加载文档,提取信息,创建向量索引,执行检索,并通过PlantUML生成MindMap图像。流程中,AI替代了手动梳理需求和创建测试用例的过程,涉及的关键组件包括TextLoader、OpenAIEmbeddings、FAISS检索和AgentExecutor。该实践帮助掌握LangChain的检索和Agent功能,以实现文档到测试用例的智能转换。

在编写测试用例的过程中,测试工程师会通过需求文档,研发的概要设计等信息编写测试用例,测试用例的输出格式常常为思维导图或者excel等数据信息。

image.png

在以上的流程中,一个测试工程师可以根据比较详细的需求文档以及研发的概要设计输出对应的测试点,以及测试用例。而如果和人工智能进行结合的话,人工智能代替的工作就是测试工程师目前的位置。

image.png

实践演练

需求说明

接下来,则通过一个小实战练习完成整个流程,以下为某个产品的需求文档(需要右键另存为)。

实战要完成具体的操作为,根据对应的需求文档,生成一个思维导图。

实现思路

image.png

完整代**码**

from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores.faiss import FAISS
from langchain_core.tools import tool
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain.agents import AgentExecutor, create_openai_tools_agent
from langchain import hub
from plantuml import PlantUML

# 声明模型
llm = ChatOpenAI()
# # 1. 读取文件。
loader = TextLoader("./需求文档.md")
data = loader.load()
# 3. embedding
embeddings = OpenAIEmbeddings()
# # 4. 向量存储
vector = FAISS.from_documents(data, embeddings)
retriever = vector.as_retriever()

from langchain.tools.retriever import create_retriever_tool

retriever_tool = create_retriever_tool(
    retriever,
    "search_demand",
    "找到需求文档中具体说明需求的地方",
)
@tool
def generate_png(uml_code, filename):
    """输入plantuml代码生成图像并保存为文件"""
    plantuml = PlantUML(url='https://plantuml.ceshiren.com/img/')
    image_bytes = plantuml.processes(uml_code)
    with open(f'{filename}.png', 'wb') as f:
        f.write(image_bytes)

tools = [retriever_tool, generate_png]
llm_with_tools = llm.bind_tools(tools)

prompt = hub.pull("hwchase17/openai-tools-agent")
agent = create_openai_tools_agent(llm, tools, prompt, )
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
result = agent_executor.invoke({
   
   
    "input": """我是一个测试工程师,我需要从以上的需求文档中梳理出来需求信息,请帮我将所有的需求梳理出来,"
             "思维导图的第一级是需求文档中的4.x开头的标题信息,表示功能模块,第二级是该功能模块的测试点,"
             "请先输出一个 plantuml 格式的源码,源码格式如代码内所示
            @startmindmap
            * root node
                * some first level node
                    * second level node
                    * another second level node
                * another first level node
            @endmindmap
             然后再根据源码信息输出一个plantuml格式的思维导图文件。生成一个图片文件,文件名为 hogwarts加任意随机数"""
})

``

总结

  1. 掌握 LangChain 中Retrieval的使用。
  2. 掌握 LangChain 中 agent 的使用。
  3. 掌握通过 LangChain 将需求文档转为测试用例的技巧
相关实践学习
阿里云百炼xAnalyticDB PostgreSQL构建AIGC应用
通过该实验体验在阿里云百炼中构建企业专属知识库构建及应用全流程。同时体验使用ADB-PG向量检索引擎提供专属安全存储,保障企业数据隐私安全。
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
相关文章
|
20天前
|
Java 测试技术 数据安全/隐私保护
软件测试中的自动化策略与工具应用
在软件开发的快速迭代中,自动化测试以其高效、稳定的特点成为了质量保证的重要手段。本文将深入探讨自动化测试的核心概念、常见工具的应用,以及如何设计有效的自动化测试策略,旨在为读者提供一套完整的自动化测试解决方案,帮助团队提升测试效率和软件质量。
|
13天前
|
Web App开发 IDE 测试技术
Selenium:强大的 Web 自动化测试工具
Selenium 是一款强大的 Web 自动化测试工具,包括 Selenium IDE、WebDriver 和 Grid 三大组件,支持多种编程语言和跨平台操作。它能有效提高测试效率,解决跨浏览器兼容性问题,进行性能测试和数据驱动测试,尽管存在学习曲线较陡、不稳定等缺点,但其优势明显,是自动化测试领域的首选工具。
92 17
Selenium:强大的 Web 自动化测试工具
|
23天前
|
机器学习/深度学习 人工智能 算法
BALROG:基准测试工具,用于评估 LLMs 和 VLMs 在复杂动态环境中的推理能力
BALROG 是一款用于评估大型语言模型(LLMs)和视觉语言模型(VLMs)在复杂动态环境中推理能力的基准测试工具。它通过一系列挑战性的游戏环境,如 NetHack,测试模型的规划、空间推理和探索能力。BALROG 提供了一个开放且细粒度的评估框架,推动了自主代理研究的进展。
32 3
BALROG:基准测试工具,用于评估 LLMs 和 VLMs 在复杂动态环境中的推理能力
|
1月前
|
监控 测试技术 开发工具
移动端性能测试工具
移动端性能测试工具
45 2
|
1月前
|
安全 前端开发 测试技术
如何选择合适的自动化安全测试工具
选择合适的自动化安全测试工具需考虑多个因素,包括项目需求、测试目标、系统类型和技术栈,工具的功能特性、市场评价、成本和许可,以及集成性、误报率、社区支持、易用性和安全性。综合评估这些因素,可确保所选工具满足项目需求和团队能力。
|
1月前
|
安全 网络协议 关系型数据库
最好用的17个渗透测试工具
渗透测试是安全人员为防止恶意黑客利用系统漏洞而进行的操作。本文介绍了17款业内常用的渗透测试工具,涵盖网络发现、无线评估、Web应用测试、SQL注入等多个领域,包括Nmap、Aircrack-ng、Burp Suite、OWASP ZAP等,既有免费开源工具,也有付费专业软件,适用于不同需求的安全专家。
138 2
|
1月前
|
监控 网络协议 Java
一些适合性能测试脚本编写和维护的工具
一些适合性能测试脚本编写和维护的工具
|
1月前
|
Web App开发 定位技术 iOS开发
Playwright 是一个强大的工具,用于在各种浏览器上测试应用,并模拟真实设备如手机和平板。通过配置 `playwright.devices`,可以轻松模拟不同设备的用户代理、屏幕尺寸、视口等特性。此外,Playwright 还支持模拟地理位置、区域设置、时区、权限(如通知)和配色方案,使测试更加全面和真实。例如,可以在配置文件中设置全局的区域设置和时区,然后在特定测试中进行覆盖。同时,还可以动态更改地理位置和媒体类型,以适应不同的测试需求。
Playwright 是一个强大的工具,用于在各种浏览器上测试应用,并模拟真实设备如手机和平板。通过配置 `playwright.devices`,可以轻松模拟不同设备的用户代理、屏幕尺寸、视口等特性。此外,Playwright 还支持模拟地理位置、区域设置、时区、权限(如通知)和配色方案,使测试更加全面和真实。例如,可以在配置文件中设置全局的区域设置和时区,然后在特定测试中进行覆盖。同时,还可以动态更改地理位置和媒体类型,以适应不同的测试需求。
66 1
|
2月前
LangChain-26 Custom Agent 自定义一个Agent并通过@tool绑定对应的工具 同时让大模型自己调用编写的@tools函数
LangChain-26 Custom Agent 自定义一个Agent并通过@tool绑定对应的工具 同时让大模型自己调用编写的@tools函数
95 3
LangChain-26 Custom Agent 自定义一个Agent并通过@tool绑定对应的工具 同时让大模型自己调用编写的@tools函数
|
2月前
|
Java 流计算
Flink-03 Flink Java 3分钟上手 Stream 给 Flink-02 DataStreamSource Socket写一个测试的工具!
Flink-03 Flink Java 3分钟上手 Stream 给 Flink-02 DataStreamSource Socket写一个测试的工具!
45 1
Flink-03 Flink Java 3分钟上手 Stream 给 Flink-02 DataStreamSource Socket写一个测试的工具!
下一篇
DataWorks