Python单元测试框架之pytest---如何执行测试用例

简介:

介绍                                                                     

  pytest是一个成熟的全功能的Python测试工具,可以帮助你写出更好的程序。

适合从简单的单元到复杂的功能测试

  • l 模块化parametrizeable装置(在2.3,持续改进)
  • l 参数化测试函数(用例)
  • l 标记测试功能与属性
  • l Skip和xfail:处理不成功的测试用例(在2.4改进)
  • l 通过xdist插件分发测试到多个CPU
  • l 不断地重新运行失败的测试
  • l 灵活约定的Python测试发现

Home Page: http://pytest.org

 

 

安装                                                                    

>pip install -U pytest   # 通过pip安装

>py.test --version        # 查看pytest版本

 This is pytest version 2.7.2, imported from C:\Python27\lib\site-packages\pytest.pyc

 

 

简单的测试                                                           

  

  让我们创建第一个文件,对个简单的功能进行测试。

复制代码
#coding=utf-8

# 功能
def func(x):
    return x + 1

# 测试用例
def test_answer():
    assert func(3) == 5
复制代码

 切换到测试文件所在的目录,通过“py.test”命令运行测试。

>py.test 

执行结果如下图:

 

===================================================================

在一个测试类中创建多个测试用例:

复制代码
#coding=utf-8

class TestClass:

    def test_one(self):
        x = "this"
        assert "h" in x

    def test_two(self):
        x = "hello"
        assert x == "hi"
复制代码

运行测试:

>py.test -q test_class.py

-q  quiet。表示在安静的模式输出报告诉。加不加这个参有什么区别呢? 读者可以对比一下两次输出的日志。其实,就是少了一些pytest的版本信息。

 

===================================================================

 

Python代码中调用pytest

pytest中同样提供了main() 来函数来执行测试用例。

pytest/

├── test_sample.py

├── test_class.py

└── test_main.py

此目录为我们练习的目录,打开test_mian.py

复制代码
import pytest

def test_main():
    assert 5 != 5

if __name__ == '__main__':
    pytest.main()
复制代码

 直接运行该程序,sublime 中按Ctrl+B 运行。结果如下:

复制代码
============================= test session starts =============================
platform win32 -- Python 2.7.10 -- py-1.4.30 -- pytest-2.7.2
rootdir: D:\pyse\pytest, inifile: 
collected 4 items

test_class.py .F
test_main.py F
test_sample.py F

================================== FAILURES ===================================
_____________________________ TestClass.test_two ______________________________

self = <test_class.TestClass instance at 0x000000000304F548>

    def test_two(self):
            x = "hello"
>           assert x == "hi"
E           assert 'hello' == 'hi'
E             - hello
E             + hi

test_class.py:11: AssertionError
__________________________________ test_main __________________________________

    def test_main():
>       assert 5 != 5
E    assert 5 != 5

test_main.py:4: AssertionError
_________________________________ test_answer _________________________________

    def test_answer():
>       assert func(3) == 5
E    assert 4 == 5
E     +  where 4 = func(3)

test_sample.py:9: AssertionError
===================== 3 failed, 1 passed in 0.03 seconds ======================
[Finished in 0.3s]
复制代码

 

  从执行结果看到,main() 默认执行了当前文件所在的目录下的所有测试文件。

  那么,如果我们只想运行某个测试文件呢?可以向main()中添加参数,就像在cmd命令提示符下面一样:

复制代码
#coding=utf-8
import pytest

def test_main():
    assert 5 != 5

if __name__ == '__main__':
    pytest.main("-q test_main.py")   # 指定测试文件
复制代码

 运行结果:

复制代码
F
================================== FAILURES ===================================
__________________________________ test_main __________________________________

    def test_main():
>       assert 5 != 5
E    assert 5 != 5

test_main.py:4: AssertionError
1 failed in 0.01 seconds
复制代码

 

那如果我想运行某个目录下的测试用例呢?指定测试目录即可。

复制代码
#coding=utf-8
import pytest

def test_main():
    assert 5 != 5

if __name__ == '__main__':
    pytest.main("d:/pyse/pytest/")  # 指定测试目录
复制代码

 

 

 创建运行测试脚本                                                  

 

  有时候我们的测试用例文件分散在不同的层级目录下,通过命令行的方式运行测试显示不太方便,如何编写一个运行所有测试用例的脚本呢? pytest可以自动帮我们生成这样的脚本。

>py.test --genscript=runtests.py

打开生成的测runtests.py文件:

复制代码
sources = """
eNrsve2S3EiSIDa3+jhtnvZ293Ra6SSdCZMUF0AzK1nk9OzM1nV2L4dNznKnm6TxY6dX1XVJVAJV
halMIAkgWVU3O2d6Ar3CPYQeQn/1QjKTf8UnAplZ7O6ZPTNxpiszgQiPCA8PD3cPD/f/449+9/5H
yds/W99M58v6fDqfl1XZzefv/9nbvxuPxxE8Oy+r8+jRy2dREq+bOt8siqaNo6zKo3hRV+1mRb/h
a1UsuiKPPpRZdFncXNVN3qYRABmN3v/R23+OLbRd/v6/ePOf/tmPflSu1nXTRe1NOxotllnbRq+7
PKlPfwMw0qNR
……
"""

import sys
import base64
import zlib

class DictImporter(object):
    def __init__(self, sources):
        self.sources = sources

    def find_module(self, fullname, path=None):
        if fullname == "argparse" and sys.version_info >= (2,7):
            # we were generated with <python2.7 (which pulls in argparse)
            # but we are running now on a stdlib which has it, so use that.
            return None
        if fullname in self.sources:
            return self
        if fullname + '.__init__' in self.sources:
            return self
        return None

    def load_module(self, fullname):
        # print "load_module:",  fullname
        from types import ModuleType
        try:
            s = self.sources[fullname]
            is_pkg = False
        except KeyError:
            s = self.sources[fullname + '.__init__']
            is_pkg = True

        co = compile(s, fullname, 'exec')
        module = sys.modules.setdefault(fullname, ModuleType(fullname))
        module.__file__ = "%s/%s" % (__file__, fullname)
        module.__loader__ = self
        if is_pkg:
            module.__path__ = [fullname]

        do_exec(co, module.__dict__) # noqa
        return sys.modules[fullname]

    def get_source(self, name):
        res = self.sources.get(name)
        if res is None:
            res = self.sources.get(name + '.__init__')
        return res

if __name__ == "__main__":
    if sys.version_info >= (3, 0):
        exec("def do_exec(co, loc): exec(co, loc)\n")
        import pickle
        sources = sources.encode("ascii") # ensure bytes
        sources = pickle.loads(zlib.decompress(base64.decodebytes(sources)))
    else:
        import cPickle as pickle
        exec("def do_exec(co, loc): exec co in loc\n")
        sources = pickle.loads(zlib.decompress(base64.decodestring(sources)))

    importer = DictImporter(sources)
    sys.meta_path.insert(0, importer)

    entry = "import pytest; raise SystemExit(pytest.cmdline.main())"
    do_exec(entry, locals()) # noqa
复制代码

 好吧!其实, 我也不理解这段代码的含义,但是执行它的可运行测试用例了。

pytest/

├── test_case/

│   ├── test_sample.py

│   ├── test_class.py

│   ├── __init__.py

│   └── test_case2/

│          ├── test_main.py

│          ├── test_time.py

│          └── __init__.py

└── runtests.py

 

执行runtest.py文件。

>python runtest.py

当然,你也可以打开runtests.py 文件运行它。

 

===================================================================

最后,pytest是如果识别测试用例的呢?它默认使用检查以test_ *.py 或*_test.py命名的文件名,在文件内部查找以test_打头的方法或函数,并执行它们。

pytest还有许多需要讨论的地方,做为这个系列的第一节,先介绍到这里。

目录
相关文章
|
21天前
|
人工智能 搜索推荐 数据管理
探索软件测试中的自动化测试框架选择与优化策略
本文深入探讨了在现代软件开发流程中,如何根据项目特性、团队技能和长期维护需求,精准选择合适的自动化测试框架。
74 8
|
7天前
|
IDE 测试技术 开发工具
10个必备Python调试技巧:从pdb到单元测试的开发效率提升指南
在Python开发中,调试是提升效率的关键技能。本文总结了10个实用的调试方法,涵盖内置调试器pdb、breakpoint()函数、断言机制、logging模块、列表推导式优化、IPython调试、警告机制、IDE调试工具、inspect模块和单元测试框架的应用。通过这些技巧,开发者可以更高效地定位和解决问题,提高代码质量。
82 8
10个必备Python调试技巧:从pdb到单元测试的开发效率提升指南
|
4天前
|
数据采集 人工智能 自然语言处理
Midscene.js:AI 驱动的 UI 自动化测试框架,支持自然语言交互,生成可视化报告
Midscene.js 是一款基于 AI 技术的 UI 自动化测试框架,通过自然语言交互简化测试流程,支持动作执行、数据查询和页面断言,提供可视化报告,适用于多种应用场景。
69 1
Midscene.js:AI 驱动的 UI 自动化测试框架,支持自然语言交互,生成可视化报告
|
16天前
|
Linux Shell 网络安全
Kali Linux系统Metasploit框架利用 HTA 文件进行渗透测试实验
本指南介绍如何利用 HTA 文件和 Metasploit 框架进行渗透测试。通过创建反向 shell、生成 HTA 文件、设置 HTTP 服务器和发送文件,最终实现对目标系统的控制。适用于教育目的,需合法授权。
53 9
Kali Linux系统Metasploit框架利用 HTA 文件进行渗透测试实验
|
22天前
|
安全 Ubuntu Linux
Metasploit Pro 4.22.6-2024111901 (Linux, Windows) - 专业渗透测试框架
Metasploit Pro 4.22.6-2024111901 (Linux, Windows) - 专业渗透测试框架
42 9
Metasploit Pro 4.22.6-2024111901 (Linux, Windows) - 专业渗透测试框架
|
26天前
|
Java 测试技术 API
探索软件测试中的自动化测试框架
本文深入探讨了自动化测试在软件开发中的重要性,并详细介绍了几种流行的自动化测试框架。通过比较它们的优缺点和适用场景,旨在为读者提供选择合适自动化测试工具的参考依据。
|
4月前
|
测试技术 索引 Python
Python接口自动化测试框架(练习篇)-- 数据类型及控制流程(一)
本文提供了Python接口自动化测试中的编程练习,包括计算器、猜数字、猜拳和九九乘法表等经典问题,涵盖了数据类型、运算、循环、条件控制等基础知识的综合应用。
55 1
|
1月前
|
Java 测试技术 持续交付
【入门思路】基于Python+Unittest+Appium+Excel+BeautifulReport的App/移动端UI自动化测试框架搭建思路
本文重点讲解如何搭建App自动化测试框架的思路,而非完整源码。主要内容包括实现目的、框架设计、环境依赖和框架的主要组成部分。适用于初学者,旨在帮助其快速掌握App自动化测试的基本技能。文中详细介绍了从需求分析到技术栈选择,再到具体模块的封装与实现,包括登录、截图、日志、测试报告和邮件服务等。同时提供了运行效果的展示,便于理解和实践。
116 4
【入门思路】基于Python+Unittest+Appium+Excel+BeautifulReport的App/移动端UI自动化测试框架搭建思路
|
26天前
|
敏捷开发 测试技术 持续交付
自动化测试之美:从零开始搭建你的Python测试框架
在软件开发的马拉松赛道上,自动化测试是那个能让你保持节奏、避免跌宕起伏的神奇小助手。本文将带你走进自动化测试的世界,用Python这把钥匙,解锁高效、可靠的测试框架之门。你将学会如何步步为营,构建属于自己的测试庇护所,让代码质量成为晨跑时清新的空气,而不是雾霾中的忧虑。让我们一起摆脱手动测试的繁琐枷锁,拥抱自动化带来的自由吧!
|
4月前
|
IDE 测试技术 开发工具
Python接口自动化测试框架(基础篇)-- 不只是txt的文件操作
本文介绍了Python中的文件操作方法,包括使用open()打开文件、close()关闭文件、read()读取内容、readline()读取单行、readlines()读取多行、write()写入内容以及writelines()写入多行的方法。同时,探讨了文件操作模式和编码问题,并扩展了上下文管理器with...as的使用,以及对图片和音频文件操作的思考和练习。
38 1
Python接口自动化测试框架(基础篇)-- 不只是txt的文件操作