技术心得:机器学习入门篇——感知器

简介: 技术心得:机器学习入门篇——感知器

1.机器学习的基本概念:


三种主要的学习方式:


监督学习:使用有类标的训练数据构建模型,即在训练过程中,所有的数据都是知道它的类别的。通过构建的这个模型对未来的数据进行预测。在监督学习的下面,又可以分为分类(利用分类对类标进行预测),以及回归(使用回归预测连续输出值)。


无监督学习:在没有已知输出变量(分类问题中是数据的类标)和反馈函数指导的情况下提取有效信息来探索数据的整体结构。子领域:1.通过聚类发现数据的子群;2,数据压缩中的降维。


强化学习:构建一个系统,在与环境交互的过程中提高系统的性能。我们可以将强化学习视为与监督学习相关的一个领域。但是强化学习与监督学习不同的是,在强化学习中,并没有一个确定的类标或一个连续类型的值,而是一个通过反馈函数产生的一个反馈值。该反馈值是对当前的系统行为的一个评价。强化学习解决的主要是交互式问题。象棋对弈就是一个常用的强化学习的例子。


机器学习的工作流程(使用预测模型进行数据分析):


如图,机器学习的学习分为两个部分,第一部分是训练阶段,通过数据带入模型中,训练生成最终模型,第二部分是测试阶段,通过新的数据经验模型的泛化能力。


2.感知器


2.1感知器原理


感知器由费兰克·罗森布拉特(Frank Rossenblatt)基于MPC神经元模型提出。感知器可以看作一个处理二分类问题的算法。


感知器的训练过程如下图:


第一步:得到净输入函数z;z为矩阵X与权值矩阵W的乘积,再加上一个权值偏差得到z:


第二步:通过激励函数得到输出的类标:


第三步,在训练阶段,通过激励函数获得到模型输出的类标y,在将类标与实际类标进行计算得到误差,进行权值更新。进行权值更新是以下的方法更新


其中


η为学习速率,y(i)为第i个样本数据的真实类标,y(i)’为第i个样本预测得出的目标,xj(i)为第i个样本中第j个值。


2.2实现算法


定义一个perception 类,


实现算法:1.初始化权值,


2.计算输出值,


3.训练模型:计算误差,进行权值更新。


?123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778public class perception { public float【】 weigth;//权值 public float【】【】 x;//输入值 public int【】 y;//样本的真实类标 public float rate;//学习数率,决定每一次循环训练中所产生的权值变化; public float【】 output;//输出的类标 public float b=0;//阈值,也称为偏差 / 实例化感知器 @param x 输入的数据 @param d 学习速率 / public perception(float【】【】 x, float d,int【】 y) { super(); //代码效果参考:http://www.lyjsj.net.cn/wz/art_23452.html

this.x = x;//输入数据 this.rate = d;//学习数率 this.y=y;//样本的真实类标 weigth=new float【x【0】.length】;//初始化权值数组 randomWeigth(x【0】.length);//随机给权值赋值 } / 给权值进行赋值,初始值为0 @param n 权值数组的大小 / public void randomWeigth(int n){ // Random random = new Random(); for(int i=0;i<n;i++){ weigth【i】=0; } } /** 训练感知器:计算出误差,然后进行权值更新 / public void train(){ output=new float【x.length】; //获取输出值 for(int i=0;i<x.length;i++){ output【i】=getoutput(x【i】); } //更新 for(int i=0;i<output.length;i++){ float update=rate(y【i】-output【i】); //更新权重 for(int j=0;j } } //计算输出值 public int getoutput(float【】 x){ int output;//输出值 //计算净输入 float z = 0; for(int i=0;i=b) output=1; else output=-1; return output; } }
相关文章
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与机器学习:探索未来的技术边界
【10月更文挑战第18天】 在这篇文章中,我们将深入探讨人工智能(AI)和机器学习(ML)的基础知识、应用领域以及未来趋势。通过对比分析,我们将揭示这些技术如何改变我们的生活和工作方式,并预测它们在未来可能带来的影响。文章旨在为读者提供一个全面而深入的理解,帮助他们更好地把握这一领域的发展趋势。
|
2月前
|
机器学习/深度学习 数据采集 算法
深入了解机器学习:从入门到应用
【10月更文挑战第6天】深入了解机器学习:从入门到应用
|
17天前
|
机器学习/深度学习 自然语言处理 语音技术
探索机器学习中的自然语言处理技术
【10月更文挑战第38天】在本文中,我们将深入探讨自然语言处理(NLP)技术及其在机器学习领域的应用。通过浅显易懂的语言和生动的比喻,我们将揭示NLP技术的奥秘,包括其工作原理、主要任务以及面临的挑战。此外,我们还将分享一些实用的代码示例,帮助您更好地理解和掌握这一技术。无论您是初学者还是有经验的开发者,相信您都能从本文中获得宝贵的知识和启示。
26 3
|
26天前
|
机器学习/深度学习 人工智能 自然语言处理
思通数科AI平台在尽职调查中的技术解析与应用
思通数科AI多模态能力平台结合OCR、NLP和深度学习技术,为IPO尽职调查、融资等重要交易环节提供智能化解决方案。平台自动识别、提取并分类海量文档,实现高效数据核验与合规性检查,显著提升审查速度和精准度,同时保障敏感信息管理和数据安全。
85 11
|
25天前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI的奥秘:机器学习入门指南
【10月更文挑战第30天】本篇文章是一份初学者友好的机器学习入门指南,旨在帮助读者理解并开始实践机器学习。我们将介绍机器学习的基本概念,包括监督学习、无监督学习和强化学习等。我们还将提供一些实用的代码示例,以帮助读者更好地理解和应用这些概念。无论你是编程新手,还是有一定经验的开发者,这篇文章都将为你提供一个清晰的机器学习入门路径。
37 2
|
1月前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
机器学习基础:使用Python和Scikit-learn入门
33 1
|
2月前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
【10月更文挑战第12天】本文介绍了如何使用Python和Scikit-learn进行机器学习的基础知识和入门实践。首先概述了机器学习的基本概念,包括监督学习、无监督学习和强化学习。接着详细讲解了Python和Scikit-learn的安装、数据处理、模型训练和评估等步骤,并提供了代码示例。通过本文,读者可以掌握机器学习的基本流程,并为深入学习打下坚实基础。
24 1
|
2月前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
本文介绍了如何使用Python和Scikit-learn进行机器学习的基础知识和实践。首先概述了机器学习的基本概念,包括监督学习、无监督学习和强化学习。接着详细讲解了Python和Scikit-learn的安装、数据处理、模型选择与训练、模型评估及交叉验证等关键步骤。通过本文,初学者可以快速上手并掌握机器学习的基本技能。
57 2
|
2月前
|
机器学习/深度学习 人工智能 数据挖掘
机器学习基础:使用Python和Scikit-learn入门
【10月更文挑战第6天】在人工智能领域,机器学习已成为核心技术。本文指导初学者使用Python与Scikit-learn入门机器学习,涵盖基本概念、环境搭建、数据处理、模型训练及评估等环节。Python因简洁性及其生态系统成为首选语言,而Scikit-learn则提供了丰富工具,简化数据挖掘与分析流程。通过实践示例,帮助读者快速掌握基础知识,为进一步深入研究奠定坚实基础。
29 4
|
2月前
|
机器学习/深度学习 自然语言处理 前端开发
前端大模型入门:Transformer.js 和 Xenova-引领浏览器端的机器学习变革
除了调用API接口使用Transformer技术,你是否想过在浏览器中运行大模型?Xenova团队推出的Transformer.js,基于JavaScript,让开发者能在浏览器中本地加载和执行预训练模型,无需依赖服务器。该库利用WebAssembly和WebGPU技术,大幅提升性能,尤其适合隐私保护、离线应用和低延迟交互场景。无论是NLP任务还是实时文本生成,Transformer.js都提供了强大支持,成为构建浏览器AI应用的核心工具。
507 1