神经网络的激活函数(一)+https://developer.aliyun.com/article/1544635?spm=a2c6h.13148508.setting.16.2a1e4f0eDtAPEV
tanh 激活函数
Tanh 的函数图像、导数图像 :
Tanh 函数将输入映射到 (-1, 1) 之间,图像以 0 为中心,在 0 点对称,当输入 大概<-3 或者 >3 时将被映射为 -1 或者 1。与 Sigmoid 相比,它是以 0 为中心的,使得其收敛速度要比 Sigmoid 快,减少迭代次数。然而,从图中可以看出,Tanh 两侧的导数也为 0,同样会造成梯度消失。
💡由于tanh函数的输出均值是0,这与许多样本数据的分布均值相近,因此在训练过程中,权重和偏差的更新可以更快地接近最优值。
💡tanh函数的导数在0到1之间变化,而Sigmoid函数的导数最大值仅为0.25,这意味着在反向传播过程中,tanh函数能够提供相对较大的梯度,从而减缓梯度消失的问题,有助于网络更快地收敛。
💡由于tanh函数的对称性和输出范围,它在正向传播时能够更好地处理正负输入值,这有助于在反向传播时进行更有效的权重更新,减少迭代次数。
import torch import matplotlib.pyplot as plt import torch.nn.functional as F def test(): _, axes = plt.subplots(1, 2) x = torch.linspace(-20, 20, 1000) y = F.tanh(x) axes[0].plot(x, y) axes[0].grid() axes[0].set_title('Tanh 函数图像') x = torch.linspace(-20, 20, 1000, requires_grad=True) F.tanh(x).sum().backward() axes[1].plot(x.detach(), x.grad) axes[1].grid() axes[1].set_title('Tanh 导数图像') plt.show()
🔎F.tanh(x)计算了输入张量x的tanh值,然后.sum()将这些tanh值相加得到一个标量值。接下来,.backward()方法会计算这个标量值关于输入张量x的梯度,即tanh函数的导数。这样,我们就可以得到tanh函数在每个输入点上的导数值,从而绘制出tanh导数图像。
backward方法
- 通用性:backward()方法不限于计算损失函数的梯度,它可以用于任何需要进行梯度计算的张量。例如,如果你在进行一些非神经网络的任务,比如简单的数学运算,你也可以使用backward()来计算梯度。
- 要使用backward()计算梯度,必须满足几个条件。首先,需要计算梯度的张量必须是叶子节点,即它们不是任何其他张量的计算结果。其次,这些张量必须设置requires_grad=True以表明需要跟踪它们的梯度。最后,所有依赖于这些叶子节点的张量也必须设置requires_grad=True,以确保梯度可以传播到整个计算图中。
relu 激活函数
ReLU激活函数的公式是 ReLU(x)=max(0, x)。
ReLU激活函数(Rectified Linear Unit)在神经网络中用于引入非线性特性,其特点是计算简单且能够加速训练过程。对于正值,它直接输出输入值(即 𝑓(𝑥)=𝑥f(x)=x),对于负值,输出为零(即 𝑓(𝑥)=0f(x)=0)。这种简单的阈值操作避免了复杂的指数或乘法运算,从而显著减少了计算量。
由于ReLU在正值区间内具有不变的梯度(即梯度为1),它有助于维持信号的传播,使得基于梯度的优化算法(如SGD、Adam等)能够更有效地更新网络权重。
函数图像如下:
ReLU 能够在x>0时保持梯度不衰减,从而缓解梯度消失问题。随着训练的推进,部分输入会落入小于0区域,导致对应权重无法更新。
与sigmoid相比,RELU的优势是:
采用sigmoid函数,计算量大(指数运算),反向传播求误差梯度时,求导涉及除法,计算量相对大,而采用Relu激活函数,整个过程的计算量节省很多。 sigmoid函数反向传播时,很容易就会出现梯度消失的情况,从而无法完成深层网络的训练。 Relu会使一部分神经元的输出为0,这样就造成了网络的稀疏性,并且减少了参数的相互依存关系,缓解了过拟合问题的发生。
在神经网络的前向传播过程中,每个隐藏层的神经元都会对其输入执行线性变换(通过权重和偏差),然后应用激活函数。例如,一个神经元的输出y可以通过以下方式计算 y=ReLU(W^Tx+b),其中W是权重矩阵,x是输入向量,b是偏置项。
在前向传播后,如果输出与实际值存在差距,则使用反向传播算法根据误差来更新网络中的权重和偏差。这个过程中,ReLU函数的梯度(导数)也会被计算出来,用于调整连接权重。
softmax 激活函数
这里,( K ) 是类别的总数,( e ) 是自然对数的底数(约等于2.71828)。
softmax用于多分类过程中,它是二分类函数sigmoid在多分类上的推广,目的是将多分类的结果以概率的形式展现出来。 SoftMax 函数将每个输入元素 ( z_i ) 映射到 (0,1) 区间内,并且所有输出值的总和为1,这使它成为一个有效的概率分布。
Softmax 直白来说就是将网络输出的 logits 通过 softmax 函数,就映射成为(0,1)的值,而这些值的累和为1(满足概率的性质),那么我们将它理解成概率,选取概率最大(也就是值对应最大的)节点,作为我们的预测目标类别。
import torch scores = torch.tensor([0.2, 0.02, 0.15, 0.15, 1.3, 0.5, 0.06, 1.1, 0.05, 3.75]) probabilities = torch.softmax(scores, dim=0) print(probabilities) 0.7392])
🍳对于隐藏层:
- 优先选择RELU激活函数
- 如果ReLu效果不好,那么尝试其他激活,如Leaky ReLu等。
- 如果你使用了Relu, 需要注意一下Dead Relu问题, 避免出现大的梯度从而导致过多的神经元死亡。
- 不要使用sigmoid激活函数,可以尝试使用tanh激活函数
🍳对于输出层:
- 二分类问题选择sigmoid激活函数
- 多分类问题选择softmax激活函数
- 回归问题选择identity激活函数