KNN算法原理及应用(一)

简介: **KNN算法**是一种监督学习的分类算法,适用于解决分类问题。它基于实例学习,无需训练过程,当新样本到来时,通过计算新样本与已有训练样本之间的距离,找到最近的K个邻居,然后根据邻居的类别进行多数表决(或加权表决)来预测新样本的类别。K值的选择、距离度量方式和分类决策规则是KNN的关键要素。KNN简单易懂,但计算复杂度随样本量增加而增加,适用于小规模数据集。在鸢尾花数据集等经典问题上表现良好,同时能处理多分类任务,并可应用于回归和数据预处理中的缺失值填充。

理解KNN 算法原理


KNN是监督学习分类算法,主要解决现实生活中分类问题。


根据目标的不同将监督学习任务分为了分类学习及回归预测问题。


监督学习任务的基本流程和架构:


(1)首先准备数据,可以是视频、音频、文本、图片等等


(2)抽取所需要的一些列特征,形成特征向量(Feature Vectors)。


(3)将这些特征向量连同标记一并送入机器学习算法中,训练出一个预测模型。


(4)然后,采用同样的特征提取方法作用于新数据,得到用于测试的特征向量。


(5)最后,使用预测模型对这些待测的特征向量进行预测并得到结果(Expected Model)。


KNN(K-Nearest Neihbor,KNN)K近邻是机器学习算法中理论最简单,最好理解的算法,是一个非常适合入门的算法,拥有如下特性:


  • 思想极度简单,应用数学知识少(近乎为零),对于很多不擅长数学的小伙伴十分友好
  • 虽然算法简单,但效果也不错


如果要了解一个人的经济水平,只需要知道他最好的5个朋友的经济能力, 对他的这五个人的经济水平求平均就是这个人的经济水平。这句话里面就包含着kNN的算法思想。



如果K=3,由于红色三角形所占比例为2/3,绿色圆将被赋予红色三角形那个类,如果K=5,由于蓝色四方形比例为3/5,因此绿色圆被赋予蓝色四方形类。


类别的判定


①投票决定,少数服从多数。取类别最多的为测试样本类别。


②加权投票法,依据计算得出距离的远近,对近邻的投票进行加权,距离越近则权重越大,设定权重为距离平方的倒数。


KNN 算法原理简单,不需要训练,属于监督学习算法,常用来解决分类问题


KNN原理:先确定K值, 再计算距离,最后挑选K个最近的邻居进行投票


KNN的应用


KNN即能做分类又能做回归, 还能用来做数据预处理的缺失值填充。由于KNN模型具有很好的解释性,对于每一个预测结果,我们可以很好的进行解释。文章推荐系统中, 对于一个用户A,我们可以把和A最相近的k个用户,浏览过的文章推送给A。


算法的思想:通过K个最近的已知分类的样本来判断未知样本的类别。


KNN三要素:


  • 距离度量
  • K值选择
  • 分类决策准则


鸢尾花数据集


鸢尾花Iris Dataset数据集是机器学习领域经典数据集,鸢尾花数据集包含了150条鸢尾花信息,每50条取自三个鸢尾花中之一:Versicolour、Setosa和Virginica


from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
 
iris = load_iris() #通过iris.data 获取数据集中的特征值  iris.target获取目标值
# 数据标准化
transformer = StandardScaler()
x_ = transformer.fit_transform(iris.data) # iris.data 数据的特征值
 
#  模型训练
estimator = KNeighborsClassifier(n_neighbors=3) # n_neighbors 邻居的数量,也就是Knn中的K值
estimator.fit(x_, iris.target) # 调用fit方法 传入特征和目标进行模型训练
# 利用模型预测
result = estimator.predict(x_)
print(result)


[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1
 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 1 2 2 2 2
 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2
 2 2]


sklearn中自带了几个学习数据集,都封装在sklearn.datasets 这个包中,加载数据后,通过data属性可以获取特征值,通过target属性可以获取目标值。


Demo数据集--kNN分类


1: 库函数导入


import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn.neighbors import KNeighborsClassifier
from sklearn import datasets


2: 数据导入


iris = datasets.load_iris()
X = iris.data[:, :2]
y = iris.target


3: 模型训练


k_list = [1, 3, 5, 8, 10, 15]
h = .02
# 创建不同颜色画布
cmap_light = ListedColormap(['orange', 'cyan', 'cornflowerblue'])
cmap_bold = ListedColormap(['darkorange', 'c', 'darkblue'])
 
plt.figure(figsize=(15,14))
# 根据不同的k值进行可视化
for ind,k in enumerate(k_list):
    clf = KNeighborsClassifier(k)
    clf.fit(X, y)
    
    x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                         np.arange(y_min, y_max, h))
    Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
    
    Z = Z.reshape(xx.shape)
 
    plt.subplot(321+ind)  
    plt.pcolormesh(xx, yy, Z, cmap=cmap_light)
    
    plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold,
                edgecolor='k', s=20)
    plt.xlim(xx.min(), xx.max())
    plt.ylim(yy.min(), yy.max())
    plt.title("3-Class classification (k = %i)"% k)
 
plt.show()



当k=1的时候,在分界点位置的数据很容易受到局部的影响,图中蓝色的部分中还有部分绿色块,主要是数据太局部敏感。当k=15的时候,不同的数据基本根据颜色分开,当时进行预测的时候,会直接落到对应的区域。



KNN算法原理及应用(二)+https://developer.aliyun.com/article/1544041?spm=a2c6h.13148508.setting.21.1fa24f0eRBJGs5

相关文章
|
4月前
|
运维 监控 JavaScript
基于 Node.js 图结构的局域网设备拓扑分析算法在局域网内监控软件中的应用研究
本文探讨图结构在局域网监控系统中的应用,通过Node.js实现设备拓扑建模、路径分析与故障定位,提升网络可视化、可追溯性与运维效率,结合模拟实验验证其高效性与准确性。
304 3
|
4月前
|
机器学习/深度学习 算法 安全
小场景大市场:猫狗识别算法在宠物智能设备中的应用
将猫狗识别算法应用于宠物智能设备,是AIoT领域的重要垂直场景。本文从核心技术、应用场景、挑战与趋势四个方面,全面解析这一融合算法、硬件与用户体验的系统工程。
|
4月前
|
机器学习/深度学习 边缘计算 人工智能
粒子群算法模型深度解析与实战应用
蒋星熠Jaxonic是一位深耕智能优化算法领域多年的技术探索者,专注于粒子群优化(PSO)算法的研究与应用。他深入剖析了PSO的数学模型、核心公式及实现方法,并通过大量实践验证了其在神经网络优化、工程设计等复杂问题上的卓越性能。本文全面展示了PSO的理论基础、改进策略与前沿发展方向,为读者提供了一份详尽的技术指南。
粒子群算法模型深度解析与实战应用
|
4月前
|
机器学习/深度学习 资源调度 算法
遗传算法模型深度解析与实战应用
摘要 遗传算法(GA)作为一种受生物进化启发的优化算法,在复杂问题求解中展现出独特优势。本文系统介绍了GA的核心理论、实现细节和应用经验。算法通过模拟自然选择机制,利用选择、交叉、变异三大操作在解空间中进行全局搜索。与梯度下降等传统方法相比,GA不依赖目标函数的连续性或可微性,特别适合处理离散优化、多目标优化等复杂问题。文中详细阐述了染色体编码、适应度函数设计、遗传操作实现等关键技术,并提供了Python代码实现示例。实践表明,GA的成功应用关键在于平衡探索与开发,通过精心调参维持种群多样性同时确保收敛效率
机器学习/深度学习 算法 自动驾驶
967 0
|
4月前
|
机器学习/深度学习 算法 搜索推荐
从零开始构建图注意力网络:GAT算法原理与数值实现详解
本文详细解析了图注意力网络(GAT)的算法原理和实现过程。GAT通过引入注意力机制解决了图卷积网络(GCN)中所有邻居节点贡献相等的局限性,让模型能够自动学习不同邻居的重要性权重。
926 0
从零开始构建图注意力网络:GAT算法原理与数值实现详解
|
5月前
|
传感器 算法 定位技术
KF,EKF,IEKF 算法的基本原理并构建推导出四轮前驱自主移动机器人的运动学模型和观测模型(Matlab代码实现)
KF,EKF,IEKF 算法的基本原理并构建推导出四轮前驱自主移动机器人的运动学模型和观测模型(Matlab代码实现)
189 2
|
3月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
219 8
|
3月前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
237 8

热门文章

最新文章