生成式人工智能(Generative AI)

简介: 生成式人工智能(Generative AI)

生成式人工智能(Generative AI)是人工智能领域的一个重要分支,其核心目标是让计算机系统具备创造性,能够生成符合人类审美或需求的内容,如图像、音乐、文本等。生成式AI技术已经取得了许多突破性进展,其中最具代表性的包括生成对抗网络(GANs)和Transformer模型。

 

生成对抗网络(GANs)

 

生成对抗网络是由生成器(Generator)和判别器(Discriminator)组成的模型。生成器试图生成看起来像真实数据的样本,而判别器则试图区分生成的样本和真实数据。通过对抗训练的方式,生成器不断提高生成样本的逼真度,判别器也在不断提高鉴别真伪的能力,最终达到动态平衡。GANs已经被广泛应用于图像生成、风格迁移、图像编辑等领域。

 

Transformer模型

 

Transformer是一种基于自注意力机制(Self-Attention)的模型架构,由Attention is All You Need论文提出。它在处理序列数据(如文本、音频等)时取得了巨大成功,特别是在机器翻译任务中的表现引人注目。Transformer摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN),采用了全新的架构,使得模型能够并行处理输入序列,极大地提高了训练速度和效果。

 

实战案例

 

1. **GANs在图像生成中的应用**:使用GANs生成逼真的人脸图像。生成器通过学习真实图像的分布,生成逼真的人脸图像,判别器则评估生成的图像是否真实。

 

2. **Transformer在文本生成中的应用**:使用Transformer模型生成文本摘要。给定一篇文章,模型可以生成该文章的简要摘要,帮助用户快速了解文章主题。

 

3. **GANs和Transformer的结合**:将GANs和Transformer结合起来,实现更加复杂的生成任务。例如,可以使用Transformer生成文本描述,然后使用GANs将文本描述转换为图像。

 

综上所述,生成式AI技术在多个领域都有着广泛的应用前景,从艺术创作到科学研究,都有着巨大的潜力和发展空间。

 

以下是一个简单的生成对抗网络(GANs)的示例代码,用于生成手写数字图像。这个示例使用TensorFlow和Keras库。

 

```python
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten, Reshape
from tensorflow.keras.optimizers import Adam
 
# 加载MNIST数据集
(x_train, _), (_, _) = mnist.load_data()
x_train = x_train / 255.0  # 将像素值缩放到0到1之间
 
# 构建生成器模型
generator = Sequential([
    Flatten(input_shape=(28, 28)),
    Dense(128, activation='relu'),
    Dense(784, activation='sigmoid'),
    Reshape((28, 28))
])
 
# 构建判别器模型
discriminator = Sequential([
    Flatten(input_shape=(28, 28)),
    Dense(128, activation='relu'),
    Dense(1, activation='sigmoid')
])
 
# 编译生成器和判别器模型
discriminator.compile(optimizer=Adam(), loss='binary_crossentropy', metrics=['accuracy'])
discriminator.trainable = False
gan = Sequential([generator, discriminator])
gan.compile(optimizer=Adam(), loss='binary_crossentropy')
 
# 定义训练函数
def train_gan(epochs, batch_size):
    for epoch in range(epochs):
        for _ in range(len(x_train) // batch_size):
            # 随机选择一个批次的真实图像
            real_images = x_train[np.random.randint(0, x_train.shape[0], batch_size)]
 
            # 生成假图像
            noise = np.random.normal(0, 1, (batch_size, 28, 28))
            fake_images = generator.predict(noise)
 
            # 训练判别器
            x = np.concatenate((real_images, fake_images))
            y = np.zeros(2 * batch_size)
            y[:batch_size] = 1
            discriminator_loss = discriminator.train_on_batch(x, y)
 
            # 训练生成器
            noise = np.random.normal(0, 1, (batch_size, 28, 28))
            y = np.ones(batch_size)
            gan_loss = gan.train_on_batch(noise, y)
 
        # 每10个epoch显示一次生成图像
        if epoch % 10 == 0:
            print(f'Epoch: {epoch}, Discriminator Loss: {discriminator_loss[0]}, Generator Loss: {gan_loss}')
 
            # 生成并保存示例图像
            example_noise = np.random.normal(0, 1, (1, 28, 28))
            example_image = generator.predict(example_noise).reshape(28, 28)
            plt.imshow(example_image, cmap='gray')
            plt.axis('off')
            plt.savefig(f'gan_generated_image_epoch_{epoch}.png')
            plt.close()
 
# 训练GAN模型
train_gan(epochs=100, batch_size=128)
```

 

请注意,这只是一个简单的示例,用于说明如何使用GAN生成手写数字图像。实际应用中,GAN的训练和调参可能需要更多的技巧和经验。

目录
相关文章
|
2天前
|
人工智能 数据挖掘 机器人
同样是人工智能 客户在哪儿AI和GPT等大模型有什么不同
客户在哪儿AI生产的是企业全历史行为数据,同时还针对ToB企业,提供基于企业全历史行为数据的数据分析服务。
|
1天前
|
机器学习/深度学习 人工智能 算法
人工智能伦理:当AI遇见道德困境
【7月更文挑战第21天】在人工智能(AI)技术飞速发展的今天,其伦理问题也日益凸显。本文将探讨AI伦理的核心议题,包括机器自主性的提升、算法偏见的减少、隐私保护的加强以及责任归属的明确。文章旨在通过分析这些关键问题,提出相应的解决策略,以促进AI技术的健康发展,并确保其在遵循伦理原则的前提下服务于人类社会。
10 1
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
中国生成式AI专利38,000个,是美国6倍、超过全球总和!
【7月更文挑战第18天】中国在生成式AI专利上领先全球,申请量达38,000项,超美国6倍,占全球总数过半。WIPO报告指出,中国因政府大力投资AI研发而占据领先地位。GenAI技术虽带来创新,但也涉及伦理、隐私、就业及安全等问题。[查看报告](https://www.wipo.int/web-publications/patent-landscape-report-generative-artificial-intelligence-genai/index.html)**
8 2
|
6天前
|
机器学习/深度学习 人工智能 算法
人工智能伦理框架:构建AI的道德指南针
【7月更文挑战第16天】随着人工智能技术的快速发展,其对社会的深远影响引起了广泛关注。本文探讨了构建人工智能伦理框架的必要性,并提出了一套基于四大原则的伦理指导方针:透明度、公正性、责任归属和隐私保护。文章旨在为AI系统的设计与部署提供道德指南,确保技术进步与人类价值观相协调。
10 3
|
5天前
|
人工智能 运维 Cloud Native
|
7天前
|
机器学习/深度学习 人工智能 自然语言处理
AI初探:人工智能的定义、历史与未来展望
【7月更文第15天】在科技飞速发展的今天,人工智能(Artificial Intelligence, AI)已经成为推动社会进步的关键力量,渗透到我们生活的方方面面,从智能家居到自动驾驶汽车,从精准医疗到智能金融,无不展现出其深远的影响。本文旨在为读者揭开人工智能的神秘面纱,从基本概念出发,回顾其发展历程,并探索未来的无限可能。
37 2
|
3天前
|
传感器 人工智能 自然语言处理
生成式AI的未来发展方向
生成式AI的未来是在对话系统(Chat)中展现智慧,还是在自主代理(Agent)中体现能力?
16 0
|
7天前
|
人工智能 搜索推荐 数据处理
苹果发布最新人工智能系统——Apple Intelligence,重新定义AI
Apple推出Apple Intelligence,集成于iOS 18等系统中,提供情境感知的个性化服务。新功能包括跨应用操作、屏幕阅读、写作辅助、图像生成及邮件管理。Siri升级,支持语言理解与生成。未来计划扩展多语言支持、集成第三方模型。与OpenAI合作将ChatGPT融入Siri。
18 5
|
8天前
|
人工智能 搜索推荐 vr&ar
苹果手机iOS18最新升级:植入AI人工智能,国内百度文心一言,国外GPT4o来辅助
iOS 18亮点速览:AI强化的Siri、RCS安卓消息兼容、自定义主屏、辅助功能增强,VR进步,新隐私工具,包括锁定APP和眼动追踪。Passwords app保障安全,Apple Intelligence提升个性化体验。
18 1
|
13天前
|
人工智能 机器人 物联网
「AI人工智能」关于AI的灵魂发问
**AI正重塑世界,区别"AI+"与"+AI":** "AI+"侧重互联网结合各行各业,如医疗、教育,引发行业重组,形成AI驱动的新经济。"+AI"则指传统行业利用AI提升自身,保持行业主导。AI的三维维度涉及与其他技术融合、应用场景结合以及不同产业的智能化进程。
23 3