前言
跌倒是一种常见的意外事件,尤其对于老年人、儿童、孕妇以及患有某些疾病的人群来说,跌倒可能会导致严重的身体损伤甚至危及生命。因此,及时准确地检测跌倒事件,对于保护人们的生命安全,提供紧急救助,减少伤害程度至关重要。因此,跌倒检测在各个领域都有广泛的应用前景,对于提高人们的生活质量和安全保障具有重要意义。
跌倒检测的典型应用场景如下:
智能家居安全系统
:在家庭环境中,尤其是对于有老年人或儿童的家庭,跌倒检测可以集成到智能家居安全系统中。通过监控摄像头或传感器,系统可以实时检测家庭成员是否发生跌倒,并及时触发警报或通知相关人员,以便提供及时的救助。公共场所监控
:在公共场所如商场、车站、公园等,人流量大且情况复杂,跌倒事件时有发生。通过安装跌倒检测系统,可以实时监控公共区域,及时发现跌倒事件,并采取相应措施保障人员的安全。养老院和医疗机构
:养老院和医疗机构是老年人或行动不便人群的聚集地,跌倒风险较高。在这些场所部署跌倒检测系统,可以及时发现和处理跌倒事件,降低伤害风险,并提供更好的护理服务。体育赛事和演出活动
:在体育赛事和演出活动中,人员密集且活动频繁,容易发生跌倒等意外事件。通过引入跌倒检测系统,可以实时监控活动现场,确保参与者的安全。工业安全领域
:在工业环境中,工作人员可能会因各种原因跌倒,如设备故障、操作失误等。跌倒检测系统可以及时发现这些情况,并采取相应措施,保障工作人员的安全。
博主通过搜集跌倒的相关数据图片,根据YOLOv8的目标检测技术,基于python与Pyqt5
开发了一款界面简洁的行人跌倒检测系统
,可支持图片、视频以及摄像头跌倒检测
,同时可以将图片或者视频检测结果进行保存
软件基本界面如下图所示:
觉得不错的小伙伴,感谢点赞、关注加收藏!如果大家有任何建议或意见,欢迎在评论区留言交流!
一、软件核心功能介绍及效果演示
软件主要功能
1. 支持图片、视频及摄像头
进行跌倒检测,同时支持图片的批量检测
;
2. 界面可实时显示目标位置
、目标总数
、置信度
、用时
等信息;
3. 支持图片
或者视频
的跌倒检测结果保存
;
(1)图片检测演示
点击图片
图标,选择需要检测的图片,或者点击文件夹图标
,选择需要批量检测图片所在的文件夹,操作演示如下:
点击目标下拉框后,可以选定指定目标的结果信息进行显示。 点击保存
按钮,会对视频检测结果进行保存,存储路径为:save_data
目录下。
注:1.右侧目标位置默认显示置信度最大一个目标位置。所有检测结果均在左下方表格中显示。
单个图片检测操作如下:
批量图片检测操作如下:
(2)视频检测演示
点击视频
图标,打开选择需要检测的视频,就会自动显示检测结果。点击保存
按钮,会对视频检测结果进行保存,存储路径为:save_data
目录下。
(3)摄像头检测演示
点击摄像头
图标,可以打开摄像头,可以实时进行跌倒检测,再次点击摄像头
图标,可关闭摄像头。
(4)保存图片与视频检测结果
点击保存
按钮后,会将当前选择的图片【含批量图片】或者视频
的检测结果进行保存。检测的图片与视频结果会存储在save_data
目录下。
二、模型的训练、评估与推理
1.YOLOv8的基本原理
YOLOv8是一种前沿的目标检测技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行
。
其主要网络结构如下:
2. 数据集准备与训练
通过网络上搜集关于跌倒的各类图片,并使用LabelMe标注工具对每张图片中的跌倒目标边框(Bounding Box)进行标注。一共包含1428张图片
,其中训练集包含1142张图片
,验证集包含286张图片
,部分图像及标注如下图所示。
图片数据的存放格式如下,在项目目录中新建datasets
目录,同时将跌倒检测的图片分为训练集与验证集放入FallData
目录下。
同时我们需要新建一个data.yaml
文件,用于存储训练数据的路径及模型需要进行检测的类别。YOLOv8在进行模型训练时,会读取该文件的信息,用于进行模型的训练与验证。data.yaml
的具体内容如下:
train: E:\MyCVProgram\Fallyolov8Detection\datasets\FallData\train # train images (relative to 'path') 128 images val: E:\MyCVProgram\Fallyolov8Detection\datasets\FallData\val # val images (relative to 'path') 128 images test: # val images (optional) # number of classes nc: 1 # Classes names: ['Fall']
注:train与val后面表示需要训练图片的路径,建议直接写自己文件的绝对路径。
数据准备完成后,通过调用train.py
文件进行模型训练,epochs
参数用于调整训练的轮数,batch
参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:
# 加载模型 model = YOLO("yolov8n.pt") # 加载预训练模型 # Use the model if __name__ == '__main__': # Use the model results = model.train(data='datasets/FallData/data.yaml', epochs=250, batch=4) # 训练模型 # 将模型转为onnx格式 # success = model.export(format='onnx')
3. 训练结果评估
在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练时主要包含三个方面的损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss),在训练结束后,可以在runs/
目录下找到训练过程及结果文件,如下所示:
各损失函数作用说明:
定位损失box_loss
:预测框与标定框之间的误差(GIoU),越小定位得越准;
分类损失cls_loss
:计算锚框与对应的标定分类是否正确,越小分类得越准;
动态特征损失(dfl_loss)
:DFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时,目标框需要缩放到特征图尺度,即除以相应的stride,并与预测的边界框计算Ciou Loss,同时与预测的anchors中心点到各边的距离计算回归DFLLoss。这个过程是YOLOv8训练流程中的一部分,通过计算DFLLoss可以更准确地调整预测框的位置,提高目标检测的准确性。
本文训练结果如下:
我们通常用PR曲线
来体现精确率和召回率的关系,本文训练结果的PR曲线如下。mAP
表示Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示判定iou为正负样本的阈值。mAP@.5:表示阈值大于0.5的平均mAP,可以看到本文模型的mAP@0.5已经达到了0.86
,结果还是很不错的。
4. 检测结果识别
模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt
文件,在runs/trian/weights
目录下。我们可以使用该文件进行后续的推理检测。
图片检测代码如下:
# 所需加载的模型目录 path = 'models/best.pt' # 需要检测的图片地址 img_path = "TestFiles/fall_9.jpg" # 加载预训练模型 # conf 0.25 object confidence threshold for detection # iou 0.7 intersection over union (IoU) threshold for NMS model = YOLO(path, task='detect') # model = YOLO(path, task='detect',conf=0.5) # 检测图片 results = model(img_path) res = results[0].plot() cv2.imshow("YOLOv8 Detection", res) cv2.waitKey(0)
执行上述代码后,会将执行的结果直接标注在图片上,结果如下:
以上便是关于此款跌倒检测系统的原理与代码介绍。基于此模型,博主用python
与Pyqt5
开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、视频及摄像头进行检测,同时支持检测结果的保存
。
关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、测试图片视频等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。
【获取方式】
本文涉及到的完整全部程序文件:包括python源码、数据集、训练代码、UI文件、测试图片视频等(见下图),获取方式见文末:
注意:该代码基于Python3.9开发,运行界面的主程序为
MainProgram.py
,其他测试脚本说明见上图。为确保程序顺利运行,请按照程序运行说明文档txt
配置软件运行所需环境。