真是太强大了!YOLO-World检测一切的任务框架使用指南,支持开放词汇检测任务

简介: 真是太强大了!YOLO-World检测一切的任务框架使用指南,支持开放词汇检测任务

1.模型简介

源码地址:https://github.com/AILab-CVC/YOLO-World

YOLO-World模型引入了基于开放词汇检测任务的先进实时方法,同时采用了视觉语言建模和在大量数据集上进行预训练的方法,能够以无与伦比的效率在零样本场景中出色地识别大量物体。这项创新可根据描述性文本检测图像中的任何物体。YOLO-World 可大幅降低计算要求,同时保持极具竞争力的性能,是众多视觉应用的多功能工具。

2.模型结构与创新点

与传统的YOLO检测器相比,YOLO-World作为一个开放词汇表检测器,可采用文本作为输入,文本编码器首先编码输入的文本。然后将输入图像编码成多尺度图像特征,RepVL-PAN算法利用图像和文本特征的多级交叉模态融合。最后,YOLO-World预测了回归边界框和对象编码,以匹配输入文本中出现的类别或名词。

核心创新点:

实时解决方案:利用 CNN 的计算速度,YOLO-World 可提供快速的开放词汇检测解决方案,满足各行业对即时结果的需求。

效率和性能: YOLO-World 可在不牺牲性能的前提下降低计算和资源需求,提供了一种可替代SAM 等模型的强大功能,但计算成本仅为它们的一小部分,从而支持实时应用。

利用离线词汇进行推理: YOLO-World 引入了 "先提示后检测 "的策略,利用离线词汇进一步提高效率。这种方法可以使用预先计算的自定义提示,包括标题或类别,并将其编码和存储为离线词汇嵌入,从而简化检测过程。

由YOLOv8 支持:基于 Ultralytics YOLOv8的YOLO-World 利用实时对象检测方面的最新进展,以无与伦比的准确性和速度促进开放词汇检测。

卓越的基准测试: YOLO在标准基准测试中,World 的速度和效率超过了现有的开放词汇检测器,包括 MDETR 和 GLIP 系列,展示了YOLOv8 在单个 NVIDIA V100 GPU 上的卓越性能。

应用广泛: YOLO-World 的创新方法为众多视觉任务带来了新的可能性,与现有方法相比,速度提高了几个数量级。

2.使用方法

2.1 使用模型推理预测

直接使用官方的预训练模型进行推理预测,默认检测所有类别。

from ultralytics import YOLOWorld
# 加载模型
model = YOLOWorld('yolov8s-world.pt')  
# 推理预测
results = model.predict('TestFiles/bus.jpg')
# 显示结果
results[0].show()

2.2 自定义词汇推理

YOLO-World 框架允许通过自定义提示指定类别,使用户能够根据自己的特定需求定制模型,而无需重新训练。这一功能对于调整模型以适应新领域或特定任务(这些任务最初并不属于训练数据的一部分)尤其有用。通过设置自定义提示词汇,用户基本上可以引导模型关注感兴趣的对象,从而提高检测结果的相关性和准确性。

通过使用model.set_classes(["fish"])方法在列表中填入需要进行检测的目标名称,即可对指定目标进行检测。此处自定义了一个鱼的类别["fish"],进行检测演示。

from ultralytics import YOLO
# 加载模型
model = YOLO('PreModels/yolov8s-worldv2.pt')  
# 定义检测类别
model.set_classes(["fish"])
# 推理
results = model.predict('TestFiles/121.png')
# Show results
results[0].show()

如果只需要检测 "人 "和 "公共汽车 "对象,可以直接指定这些类model.set_classes(["person", "bus"])

from ultralytics import YOLO
# Initialize a YOLO-World model
model = YOLO('yolov8s-world.pt')  # or choose yolov8m/l-world.pt
# Define custom classes
model.set_classes(["person", "bus"])
# Execute prediction for specified categories on an image
results = model.predict('bus.jpg')
# Show results
results[0].show()

可以看到,对比2.1节中不设置检测对象的检测结果,这里并没有将交通标志检测并且标记出来,只对人与公交车进行了检测。

2.3 自定义词汇类别保存模型

可以在设置自定义类后保存模型。这样就可以创建一个YOLO-World 模型版本,专门用于特定目标检测。

首先加载YOLO-World 模型,为其设置自定义类并保存:

from ultralytics import YOLO
# 加载预训练模型
model = YOLO('yolov8s-world.pt')  
# 定义检测类别
model.set_classes(["person", "bus"])
# 保存模型
model.save("custom_yolov8s.pt")

保存后custom_yolov8s.pt 模型的行为与其他预训练的YOLOv8 模型无异,但有一个关键区别:它现在经过优化,只能检测您定义的类别。针对您的特定应用场景,这种定制可以大大提高检测性能和效率。

使用保存后的模型进行推理预测:

from ultralytics import YOLO
# 加载保存的模型
model = YOLO('custom_yolov8s.pt')
# 使用模型进行推理
results = model.predict('bus.jpg')
# 显示结果
results[0].show()

使用自定义词汇保存的优点

效率高:通过关注相关对象、减少计算开销和加快推理速度,简化检测过程。

灵活性更好:可使模型轻松适应新的或特殊的检测任务,而无需进行大量的再培训或数据收集。

简单便捷:无需在运行时重复指定自定义类,从而简化了部署,使模型可直接使用其嵌入式词汇。

性能更高:通过将模型的注意力和资源集中在识别定义的对象上,提高指定类别的检测精度。


相关文章
|
3月前
|
SQL 人工智能 数据库
Pixeltable:一张表搞定embeddings、LLM、向量搜索,多模态开发不再拼凑工具
Pixeltable 是一个开源多模态 AI 基础设施框架,统一管理文档、图像、视频、embedding 和 LLM 输出,通过“一切皆表”理念,将数据存储、计算与 pipeline 自动化集成于一体,简化 RAG、目标检测、相似性检索等应用开发,告别拼凑式架构,提升开发效率与可维护性。
191 5
Pixeltable:一张表搞定embeddings、LLM、向量搜索,多模态开发不再拼凑工具
|
机器人 计算机视觉
检测一切YOLO-World的几个实用使用技巧,助力精准高效目标检测任务!
检测一切YOLO-World的几个实用使用技巧,助力精准高效目标检测任务!
|
Python
OSError: cannot open resource
【9月更文挑战第20天】
928 3
|
资源调度 自然语言处理 网络架构
YOLOv11改进策略【Neck】| 使用CARAFE轻量级通用上采样算子
YOLOv11改进策略【Neck】| 使用CARAFE轻量级通用上采样算子
805 11
YOLOv11改进策略【Neck】| 使用CARAFE轻量级通用上采样算子
|
人工智能 计算机视觉 Python
【超详细】【YOLOV8使用说明】一套框架解决CV的5大任务:目标检测、分割、姿势估计、跟踪和分类任务【含源码】(1)
【超详细】【YOLOV8使用说明】一套框架解决CV的5大任务:目标检测、分割、姿势估计、跟踪和分类任务【含源码】
【超详细】【YOLOV8使用说明】一套框架解决CV的5大任务:目标检测、分割、姿势估计、跟踪和分类任务【含源码】(1)
|
编解码 算法 计算机视觉
YOLOv11改进策略【小目标改进】| 添加专用于小目标的检测层 附YOLOv1~YOLOv11的检测头变化详解
YOLOv11改进策略【小目标改进】| 添加专用于小目标的检测层 附YOLOv1~YOLOv11的检测头变化详解
2318 11
|
机器学习/深度学习 人工智能 算法
X-AnyLabeling:开源的 AI 图像标注工具,支持多种标注样式,适于目标检测、图像分割等不同场景
X-AnyLabeling是一款集成了多种深度学习算法的图像标注工具,支持图像和视频的多样化标注样式,适用于多种AI训练场景。本文将详细介绍X-AnyLabeling的功能、技术原理以及如何运行该工具。
3492 2
X-AnyLabeling:开源的 AI 图像标注工具,支持多种标注样式,适于目标检测、图像分割等不同场景
|
XML 机器学习/深度学习 数据格式
YOLOv8训练自己的数据集+常用传参说明
YOLOv8训练自己的数据集+常用传参说明
23724 3
|
XML JSON 数据可视化
数据集学习笔记(二): 转换不同类型的数据集用于模型训练(XML、VOC、YOLO、COCO、JSON、PNG)
本文详细介绍了不同数据集格式之间的转换方法,包括YOLO、VOC、COCO、JSON、TXT和PNG等格式,以及如何可视化验证数据集。
4072 1
数据集学习笔记(二): 转换不同类型的数据集用于模型训练(XML、VOC、YOLO、COCO、JSON、PNG)
|
计算机视觉
YOLOv5改进 | 2023检测头篇 | 利用AFPN增加小目标检测层(让小目标无所遁形)
YOLOv5改进 | 2023检测头篇 | 利用AFPN增加小目标检测层(让小目标无所遁形)
617 0