python自动化标注工具+自定义目标P图替换+深度学习大模型(代码+教程+告别手动标注)

简介: python自动化标注工具+自定义目标P图替换+深度学习大模型(代码+教程+告别手动标注)

省流建议

本文针对以下需求:

  • 想自动化标注一些目标
  • 不再想使用yolo
  • 想在目标检测/语意分割有所建树
  • 计算机视觉项目
  • 想玩一玩大模型
  • 了解自动化工具
  • 了解最前沿模型
  • 自定义目标P图替换

确定好需求,那么我们发车!


实现功能与结果

  1. 该模型将首先使用对语言的理解来识别文本提示中提到的对象。例如,在描述“两只用棍子的狗”中,该模型将“狗”和“棍子”一词识别为对象

  1. 然后,该模型将为自然语言描述中确定的每个对象生成一组对象建议。对象建议是使用各种功能(例如对象的颜色,形状和纹理)生成的
  2. 接下来,模型返回每个对象建议的分数。分数是对象建议包含实际对象的可能性
  3. 然后,该模型将选择顶级对象建议作为最终检测。最终检测是图像中最自信的对象


我知道你对文字不感兴趣,你想直接拿代码来就用!

那么,它来了。

代码部署

在下一节中,我们将演示一个开放集对象目标检测。在这里,我们将使用一个预先训练的模型来检测’玻璃与盖子’(作为文本提示)通过摄像头饲料。

首先导入相关的库和 模块。代码的最后两行导入所需的推理模块。

import os
import cv2
import numpy as np
from PIL import Image

设置模型配置和权重文件路径

接下来,定义 模型配置文件和权重文件路径。除此之外,我们还定义了两个超参数框和图像阈值来控制对象框和图像的选择。默认情况下,模型输出900个对象框,这些对象框根据它们与输入文本的相似性得分进行排序。通过调整 max _ box 超参数,可以更改接地 DIN模型输出的对象框的数量。

HOME = os.getcwd()
# set model configuration file path
CONFIG_PATH = os.path.join(HOME, "groundingdino/config/GroundingDINO_SwinT_OGC.py")

# set model weight file ath
WEIGHTS_NAME = "groundingdino_swint_ogc.pth"
WEIGHTS_PATH = os.path.join(HOME, "weights", WEIGHTS_NAME)

# set text prompt
TEXT_PROMPT = "glass with lid"

# set box and text threshold values
BOX_TRESHOLD = 0.35
TEXT_TRESHOLD = 0.25

检测

最后,我们使用 opencv 模块启动我们的摄像机 feed,并连续读取帧。在将摄像机提要传递给模型之前,我们需要对图像帧执行一些变换。首先,通过执行三个图像转换创建一个转换对象。

随机尺寸([800] ,max _ size = 1333)-此转换将图像的宽度调整为800,最大高度为1333像素。这有助于防止模型过度适应特定的尺寸。


ToTensor ()-这个转换将图像转换为一个 Python 张量。


正常化([0.485,0.456,0.406] ,[0.229,0.224,0.225])-这个转换通过减去平均值并除以 ImageNet 数据集的标准差来正常化图像。这有助于使模型对闪电和其他因素的变化更加稳健。


接下来,帧(相机帧的一个数字数组)被转换成 RGB 颜色空间中的 PIL 图像对象,最后通过执行上述三个转换转换成一个转换对象。

cap = cv2.VideoCapture(0)
while True:
    ret, frame = cap.read()
    # create a transform function by applying 3 image transaformations
    transform = T.Compose(
        [
            T.RandomResize([800], max_size=1333),
            T.ToTensor(),
            T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
        ]
    )
    # convert frame to a PIL object in RGB space
    image_source = Image.fromarray(frame).convert("RGB")
    # convert the PIL image object to a transform object
    image_transformed, _ = transform(image_source, None)
    
    # predict boxes, logits, phrases
    boxes, logits, phrases = predict(
    model=model, 
    image=image_transformed, 
    caption=TEXT_PROMPT, 
    box_threshold=BOX_TRESHOLD, 
    text_threshold=TEXT_TRESHOLD,
    device='cpu')
    
    # annotate the image
    annotated_frame = annotate(image_source=frame, boxes=boxes, logits=logits, phrases=phrases)
    # display the output
    out_frame = cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB)
    cv2.imshow('frame', out_frame)

敲黑板 重点

自动化标注举例说明

你想获取图中熊这个目标

不是图片中所有的类别你都想要你只想获取部分目标,那么你在定义时要如下操作:

需要将Text Prompt做替换 ,如你只想对图片中的熊感兴趣:

Text Prompt=bear.

对应生成的label/json文件

"shapes": [
    {
      "label": "dog",
      "points": [
        [
          20.913907284768214,
          26.47019867549669
        ],
        [
          87.96688741721854,
          97.66225165562913
        ]
      ],
      "group_id": null,
      "shape_type": "rectangle",
      "flags": {}
    },
    {
      "label": "cat",
      "points": [
        [
          91.11258278145695,
          43.35761589403974
        ],
        [
          131.50993377483442,
          84.91390728476821
        ]
      ],

如果对大海和熊感兴趣,则:

Text Prompt=bear,sea

注意 逗号间隔!

自动化P图

如下我们可以选择将图中的目标狂替换为我们想要的目标!

可以说做到了完美贴合P图 ,再也不用PS工具费时费力修图啦

代码获取

code get:见博客底部推广
相关文章
|
2月前
|
数据采集 数据可视化 数据挖掘
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析
本文探讨了金融资产波动率建模中的三种主流方法:GARCH、GJR-GARCH和HAR模型,基于SPY的实际交易数据进行实证分析。GARCH模型捕捉波动率聚类特征,GJR-GARCH引入杠杆效应,HAR整合多时间尺度波动率信息。通过Python实现模型估计与性能比较,展示了各模型在风险管理、衍生品定价等领域的应用优势。
382 66
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析
|
14天前
|
数据采集 供应链 API
实战指南:通过1688开放平台API获取商品详情数据(附Python代码及避坑指南)
1688作为国内最大的B2B供应链平台,其API为企业提供合法合规的JSON数据源,直接获取批发价、SKU库存等核心数据。相比爬虫方案,官方API避免了反爬严格、数据缺失和法律风险等问题。企业接入1688商品API需完成资质认证、创建应用、签名机制解析及调用接口四步。应用场景包括智能采购系统、供应商评估模型和跨境选品分析。提供高频问题解决方案及安全合规实践,确保数据安全与合法使用。立即访问1688开放平台,解锁B2B数据宝藏!
|
14天前
|
API 开发工具 Python
【Azure Developer】编写Python SDK代码实现从China Azure中VM Disk中创建磁盘快照Snapshot
本文介绍如何使用Python SDK为中国区微软云(China Azure)中的虚拟机磁盘创建快照。通过Azure Python SDK的Snapshot Class,指定`location`和`creation_data`参数,使用`Copy`选项从现有磁盘创建快照。代码示例展示了如何配置Default Azure Credential,并设置特定于中国区Azure的`base_url`和`credential_scopes`。参考资料包括官方文档和相关API说明。
|
2月前
|
存储 缓存 Java
Python高性能编程:五种核心优化技术的原理与Python代码
Python在高性能应用场景中常因执行速度不及C、C++等编译型语言而受质疑,但通过合理利用标准库的优化特性,如`__slots__`机制、列表推导式、`@lru_cache`装饰器和生成器等,可以显著提升代码效率。本文详细介绍了这些实用的性能优化技术,帮助开发者在不牺牲代码质量的前提下提高程序性能。实验数据表明,这些优化方法能在内存使用和计算效率方面带来显著改进,适用于大规模数据处理、递归计算等场景。
82 5
Python高性能编程:五种核心优化技术的原理与Python代码
|
3月前
|
Python
课程设计项目之基于Python实现围棋游戏代码
游戏进去默认为九路玩法,当然也可以选择十三路或是十九路玩法 使用pycharam打开项目,pip安装模块并引用,然后运行即可, 代码每行都有详细的注释,可以做课程设计或者毕业设计项目参考
89 33
|
5天前
|
机器学习/深度学习 设计模式 测试技术
Python 高级编程与实战:构建自动化测试框架
本文深入探讨了Python中的自动化测试框架,包括unittest、pytest和nose2,并通过实战项目帮助读者掌握这些技术。文中详细介绍了各框架的基本用法和示例代码,助力开发者快速验证代码正确性,减少手动测试工作量。学习资源推荐包括Python官方文档及Real Python等网站。
|
7月前
|
测试技术 Python
Python接口自动化测试框架(基础篇)-- 流程控制之循环语句for&while
本文介绍了Python中的循环语句,包括while和for循环的使用,range()函数的运用,以及continue、break和pass关键字的说明,同时提出了关于while循环是否能与成员运算符结合使用的思考。
80 1
Python接口自动化测试框架(基础篇)-- 流程控制之循环语句for&while
|
7月前
|
测试技术 索引 Python
Python接口自动化测试框架(练习篇)-- 数据类型及控制流程(一)
本文提供了Python接口自动化测试中的编程练习,包括计算器、猜数字、猜拳和九九乘法表等经典问题,涵盖了数据类型、运算、循环、条件控制等基础知识的综合应用。
75 1
|
4月前
|
Java 测试技术 持续交付
【入门思路】基于Python+Unittest+Appium+Excel+BeautifulReport的App/移动端UI自动化测试框架搭建思路
本文重点讲解如何搭建App自动化测试框架的思路,而非完整源码。主要内容包括实现目的、框架设计、环境依赖和框架的主要组成部分。适用于初学者,旨在帮助其快速掌握App自动化测试的基本技能。文中详细介绍了从需求分析到技术栈选择,再到具体模块的封装与实现,包括登录、截图、日志、测试报告和邮件服务等。同时提供了运行效果的展示,便于理解和实践。
224 4
【入门思路】基于Python+Unittest+Appium+Excel+BeautifulReport的App/移动端UI自动化测试框架搭建思路
|
7月前
|
IDE 测试技术 开发工具
Python接口自动化测试框架(基础篇)-- 不只是txt的文件操作
本文介绍了Python中的文件操作方法,包括使用open()打开文件、close()关闭文件、read()读取内容、readline()读取单行、readlines()读取多行、write()写入内容以及writelines()写入多行的方法。同时,探讨了文件操作模式和编码问题,并扩展了上下文管理器with...as的使用,以及对图片和音频文件操作的思考和练习。
55 1
Python接口自动化测试框架(基础篇)-- 不只是txt的文件操作

热门文章

最新文章