NLP实践!文本语法纠错模型实战,搭建你的贴身语法修改小助手 ⛵

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,5000CU*H 3个月
简介: 本文详细介绍 GECToR 这一优秀的文本纠错模型,使用 Transformer 编码器的序列标注器,以保证文本数据的质量,进而提升NLP模型的效果。
1d9ab3a69fea51b80de57c8735d387cc.png
💡 作者: 韩信子@ ShowMeAI
📘 深度学习实战系列https://www.showmeai.tech/tutorials/42
📘 自然语言处理实战系列https://www.showmeai.tech/tutorials/45
📘 本文地址https://showmeai.tech/article-detail/399
📢 声明:版权所有,转载请联系平台与作者并注明出处
📢 收藏 ShowMeAI查看更多精彩内容
235a942f08897d14fa3cf5bf07655c42.png

自然语言处理(NLP)技术可以完成文本数据上的分析挖掘,并应用到各种业务当中。例如:

  • 机器翻译(Machine Translation),接收一种语言的输入文本并返回目标语言的输出文本(包含同样的含义)。
  • 情感分析(Sentiment Analysis),接收文本数据,判定文本是正面的、负面的还是中性的等。
  • 文本摘要(Text Summarization),接收文本输入并将它们总结为更精炼的文本语言输出。

输入文本的质量会很大程度影响这些业务场景的模型效果。因此,在这些文本数据到达机器翻译、情感分析、文本摘要等下游任务之前,我们要尽量保证输入文本数据的语法正确性。

34a0d50edb2e8fd763d00a027f5d419c.png

语法纠错(Grammatical Error Correction)是一个有非常广泛使用的应用场景,有2种典型的模型方法:

  • 序列到序列(seq2seq)模型:它最早被使用在机器翻译引擎中,将给定语言翻译成同一种语言,这种映射方法同样可以用来做语法纠错(例如📘Yuan 和 Briscoe,2014)。
  • 序列标注模型:输入文本被标注然后映射回更正的内容(例如📘Malmi 等人,2019)。

虽然 seq2seq 神经机器翻译方法已被证明可以实现最先进的性能(例如📘Vaswani 等人,2017 年),但它仍然存在某些缺点,例如:1)推理和生成输出需要很长时间;2)训练需要大量数据;3)与非神经架构相比,模型的神经架构使得对结果的解释具有挑战性(例如📘Omelianchuk 等人,2020 年)等。为了克服这些缺点,我们在本文中讨论并应用更新的方法:使用 Transformer 编码器的序列标注器

20e4e7b6b2cb14a84f67d8b208acf8c5.png

📘Omelianchuk, et al., 2020 中提出的 📘GECToR 模型,是非常优秀的文本纠错模型。它对 Transformer seq2seq 进行微调,Transformer 的引入极大改善了 seq2seq 模型的推理时间问题,并且可以在较小的训练数据的情况下实现更好的效果。

在后续的内容中,ShowMeAI将演示使用这个库来实现纠正给定句子中语法错误的方案,我们还会创建一个可视化用户界面来将这个AI应用产品化。

💡 语法纠错代码全实现

整个语法纠错代码实现包含3个核心步骤板块:

  • 准备工作:此步骤包括工具库设定、下载预训练模型、环境配置。
  • 模型实践:实现并测试语法纠错模型。
  • 用户界面:创建用户界面以产品化和提高用户体验

💦 准备工作

我们先使用以下命令将 GitHub 中的代码复制到我们本地,这是 GECToR 模型对应的实现:

git clone https://github.com/grammarly/gector.git
4207155f8b0a62486c91fa73b0d5bee4.png

GECToR 提供了3种预训练模型。我们在这里使用 📘RoBERTa 作为预训练编码器的模型,它在现有模型中具有最高总分最好的表现。我们使用以下命令下载预训练模型:

wget https://grammarly-nlp-data-public.s3.amazonaws.com/gector/roberta_1_gectorv2.th

下载完毕后,我们把下载的模型权重移动到gector目录,以便后续使用:

mv roberta_1_gectorv2.th ./gector/gector

接下来,我们切换到gector文件夹下:

cd ./gector

gector对其他工具库有依赖,因此我们将使用以下命令安装这些依赖:

pip install -r requirements.txt

💦 模型实践

现在我们已经做好所有准备工作了,可以开始使用工具库。总共有下述步骤:

  • 导入工具包
  • 构建模型实例
  • 在有语法错误的句子上测试模型,以查看输出

① she are looking at sky

为此,我们将使用以下句子『she are looking at sky』。

# 导入工具库
from gector.gec_model import GecBERTModel

# 构建模型实例
model = GecBERTModel(vocab_path = "./data/output_vocabulary", model_paths = ["./gector/roberta_1_gectorv2.th"])

# 需要纠错的句子
sent = 'she are looking at sky'

# 存储处理结果
batch = []
batch.append(sent.split())
final_batch, total_updates = model.handle_batch(batch)
updated_sent = " ".join(final_batch[0])
print(f"Original Sentence: {sent}\n")
print(f"Updated Sentence: {updated_sent}")

结果:

27919c978df0de03078487bfc83d616f.png

模型的纠错结果非常准确!有以下变化:

  • 句首将she大写为She
  • are更改为is,以使sheis主谓一致
  • sky之前添加the
  • 在句子末尾加句号.

② she looks at sky yesterday whil brushed her hair

刚才的句子语法比较简单,让我们看看复杂场景,比如混合时态下模型的表现如何。

# 添加复杂句子
sent = 'she looks at sky yesterday whil brushed her hair'

# 存储纠错后的句子
batch = []
batch.append(sent.split())
final_batch, total_updates = model.handle_batch(batch)
updated_sent = " ".join(final_batch[0])
print(f"Original Sentence: {sent}\n")
print(f"Updated Sentence: {updated_sent}")

结果:

421ea46d0b123fe212840b8c11937156.png

在这个句子中我们来看一下纠错模型做了什么:

  • 句首将she大写为She
  • looks改为looked,与yesterday一致
  • sky之前添加the
  • 将缺失的字母添加到while
  • brushed改为brushing,这是while之后的正确格式

不过这里有一点大家要注意,模型的另外一种纠错方式是将yesterday更改为today,对应的时态就不需要用过去式。但这里模型决定使用过去时态。

③ she was looking at sky later today whil brushed her hair

现在让我们再看一个例子:

# 添加复杂句子
sent = 'she was looking at sky later today whil brushed her hair'

# 纠错及存储
batch = []
batch.append(sent.split())
final_batch, total_updates = model.handle_batch(batch)
updated_sent = " ".join(final_batch[0])
print(f"Original Sentence: {sent}\n")
print(f"Updated Sentence: {updated_sent}")

结果:

31c326f7964afb057d8a0ef5cba1d576.png

我们发现了一种边缘情况,在这种情况下,模型无法识别正确的动词时态。更新后的句子是『She was looking at the sky later today while brushing her hair』,我们读下来感觉这句是将来时(今天晚点),而模型纠正后的句子是过去时。

我们想一想,为什么这句对模型比以前更具挑战性呢?答案是later today用两个词暗示时间,这需要模型具有更深层次的上下文意识。如果没有later这个词,我们会有一个完全可以接受的句子,如下所示:

e6d820efef564e2e54f290081f1a7cfb.png

在这种情况下,today可能指的是今天早些时候(即过去),纠错后的语法完全可以接受。但在原始示例中,模型未将later today识别为表示将来时态。

💦 用户界面

在下一步,我们将制作一个web界面,通过用户界面把它产品化并改善用户体验:

# 创建一个函数,对于输入的句子进行语法纠错并返回结果
def correct_grammar(sent):
    batch = []
    batch.append(sent.split())
    final_batch, total_updates = model.handle_batch(batch)
    updated_sent = " ".join(final_batch[0])
    return updated_sent

我们找一个句子测试这个函数,确保它能正常工作和输出结果。

sent = 'she looks at sky yesterday whil brushed her hair'

print(f"Original Sentence: {sent}\n")
print(f"Updated Sentence: {correct_grammar(sent = sent)}")

结果:

6579db8ba909f71c346df4b450a8740c.png

接下来我们将添加一个可视化用户界面。我们使用 📘Gradio 来完成这个环节,它是一个开源 Python 工具库,可以快捷创建 Web 应用程序,如下所示。

# 在命令行运行以安装gradio
pip install gradio

安装Gradio后,我们继续导入和创建用户界面,如下所示:

# 导入Gradio
import gradio as gr

# 构建一个demo实例
demo = gr.Interface(fn = correct_grammar, inputs = gr.Textbox(lines = 1, placeholder = 'Add your sentence here!'), outputs = 'text')

# 启动demo
demo.launch()

结果我们得到如下的界面:

2dcd6c39559cf47b94acd50d55aa2bf8.png

我们可以在 web 界面中再次测试我们的句子啦!我们只需在左侧的框中键入待纠错的句子,然后按 Submit(提交)。接错后的结果将显示在右侧的框中,如下所示:

01e124b4f4d2d6ae2744ba813f45f589.png

非常顺利,你也快来测试一下吧!

💡 总结

在这篇文章中,我们实践了语法纠错模型。我们使用公开可用的 GECToR 库来实现一个预训练的语法纠错模型,在一些错误的句子上对其进行测试,发现该模型的适用场景和局限性(需要提高的地方),最后我们构建了一个可视化界面把文本纠错产品化。

参考资料

推荐阅读

e9190f41b8de4af38c8a1a0c96f0513b~tplv-k3u1fbpfcp-zoom-1.image

目录
相关文章
|
11天前
|
机器学习/深度学习 自然语言处理 PyTorch
从零开始构建nlp情感分析模型!
本教程介绍了如何使用PyTorch和Hugging Face的Transformers库构建一个情感分析模型。主要内容包括导入所需库、读取训练数据集、加载预训练的BERT模型和分词器、定义情感数据集类、划分训练集和验证集、创建数据加载器、设置训练参数、训练模型、评估模型性能以及定义和测试预测函数。通过这些步骤,可以实现一个简单而有效的情感分析模型。
40 2
|
14天前
|
机器学习/深度学习 自然语言处理 知识图谱
GraphRAG在自然语言处理中的应用:从问答系统到文本生成
【10月更文挑战第28天】作为一名自然语言处理(NLP)和图神经网络(GNN)的研究者,我一直在探索如何将GraphRAG(Graph Retrieval-Augmented Generation)模型应用于各种NLP任务。GraphRAG结合了图检索和序列生成技术,能够有效地处理复杂的语言理解和生成任务。本文将从个人角度出发,探讨GraphRAG在构建问答系统、文本摘要、情感分析和自动文本生成等任务中的具体方法和案例研究。
36 5
|
16天前
|
自然语言处理 Python
如何使用自然语言处理库`nltk`进行文本的基本处理
这段Python代码展示了如何使用`nltk`库进行文本的基本处理,包括分词和词频统计。首先需要安装`nltk`库,然后通过`word_tokenize`方法将文本拆分为单词,并使用`FreqDist`类统计每个单词的出现频率。运行代码后,会输出每个词的出现次数,帮助理解文本的结构和常用词。
|
1月前
|
自然语言处理 算法 数据挖掘
探讨如何利用Python中的NLP工具,从被动收集到主动分析文本数据的过程
【10月更文挑战第11天】本文介绍了自然语言处理(NLP)在文本分析中的应用,从被动收集到主动分析的过程。通过Python代码示例,详细展示了文本预处理、特征提取、情感分析和主题建模等关键技术,帮助读者理解如何有效利用NLP工具进行文本数据分析。
46 2
|
1月前
|
机器学习/深度学习 存储 自然语言处理
从理论到实践:如何使用长短期记忆网络(LSTM)改善自然语言处理任务
【10月更文挑战第7天】随着深度学习技术的发展,循环神经网络(RNNs)及其变体,特别是长短期记忆网络(LSTMs),已经成为处理序列数据的强大工具。在自然语言处理(NLP)领域,LSTM因其能够捕捉文本中的长期依赖关系而变得尤为重要。本文将介绍LSTM的基本原理,并通过具体的代码示例来展示如何在实际的NLP任务中应用LSTM。
67 4
|
1月前
|
机器学习/深度学习 自然语言处理 并行计算
探索深度学习中的Transformer模型及其在自然语言处理中的应用
【10月更文挑战第6天】探索深度学习中的Transformer模型及其在自然语言处理中的应用
87 0
|
1月前
|
机器学习/深度学习 自然语言处理 异构计算
【NLP自然语言处理】初识深度学习模型Transformer
【NLP自然语言处理】初识深度学习模型Transformer
|
1月前
|
机器学习/深度学习 自然语言处理 算法
【NPL自然语言处理】带你迅速了解传统RNN模型
【NPL自然语言处理】带你迅速了解传统RNN模型
|
1月前
|
自然语言处理
【NLP自然语言处理】文本特征处理与数据增强
【NLP自然语言处理】文本特征处理与数据增强
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术在自然语言处理中的应用与挑战
【10月更文挑战第3天】本文将探讨AI技术在自然语言处理(NLP)领域的应用及其面临的挑战。我们将分析NLP的基本原理,介绍AI技术如何推动NLP的发展,并讨论当前的挑战和未来的趋势。通过本文,读者将了解AI技术在NLP中的重要性,以及如何利用这些技术解决实际问题。

热门文章

最新文章

相关产品

  • 自然语言处理