基于YOLOv8的多目标检测与自动标注软件【python源码+PyqtUI界面+exe文件】【深度学习】

简介: 基于YOLOv8的多目标检测与自动标注软件【python源码+PyqtUI界面+exe文件】【深度学习】

前言

YOLOv8是一种前沿的计算机视觉技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性。这种模型属于Ultralytics平台,它的优势在于速度快且准确率高,这得益于其"You Only Look Once"(你仅需看一遍)的工作原理。不仅如此,YOLOv8不仅限于检测任务,还拓展到了分类、分割、跟踪,甚至姿态估计等多个领域。

目标检测作为计算机视觉的重要任务之一,具有广泛的应用价值。例如,在交通管理中,可以通过实时车辆检测和跟踪来更好地管理交通流量;在智能监控中,可以用于识别异常行为或危险情况等。因此,YOLOv8这类高效准确的目标检测模型在各领域的应用具有重要意义。

博主根据YOLOv8的目标检测技术,基于python与Pyqt5开发了一款简洁的支持80个类别的目标检测自动化标注软件,可支持图片、视频以及摄像头目标检测,同时支持检测类型选择图片的批量自动标注,并将检测结果保存为YOLO格式的文件,用于后续训练。

软件基本界面如下图所示:

觉得不错的小伙伴,感谢点赞、关注加收藏!如果大家有任何建议或意见,欢迎在评论区留言交流!

一、软件核心功能介绍及效果演示

软件主要功能

1. 支持80个类别的目标检测,详细目标类别见下方说明;
2. 支持图片、视频及摄像头进行检测,并显示目标位置目标总数,保存检测结果;
3. 支持图片批量检测与自动标注,并将结果保存为YOLO格式文件,用于后续模型训练;
4. 支持单个类别的目标选择与检测,并保存检测结果与YOLO标签文件。

80个目标检测类别说明

本文是基于YOLOv8的基础训练模型进行开发的,模型使用的是COCO数据集。支持80个类别的目标检测,具体目标类别名称如下:

[   '人','自行车', '汽车', '摩托车', '飞机', '公共汽车', '火车',
    '卡车', '船', '交通灯', '消防栓', '停车标志', '停车收费表',
    '长凳', '鸟', '猫', '狗', '马', '羊', '牛', '大象', '熊',
    '斑马', '长颈鹿', '背包', '雨伞','手袋', '领带', '手提箱',
    '飞盘', '雪橇', '滑雪板', '运动球', '风筝', '棒球棒',
    '棒球手套', '滑板', '冲浪板', '网球拍', '瓶子', '酒杯', '杯子',
    '叉子', '刀', '汤匙', '碗', '香蕉', '苹果', '三明治', '橙子',
    '西兰花', '胡萝卜', '热狗', '披萨', '甜甜圈', '蛋糕', '椅子',
    '沙发', '盆栽植物', '床', '餐桌', '马桶', '电视', '笔记本电脑',
    '鼠标', '遥控器', '键盘', '手机', '微波炉', '烤箱', '烤面包机',
    '水槽', '冰箱', '书', '时钟', '花瓶', '剪刀', '泰迪熊', '吹风机', '牙刷']

包含了常见的人、汽车、公共汽车、交通灯等。

(1)图片检测演示

点击图片图标,选择需要检测的图片,或者点击文件夹图标,选择需要批量检测图片所在的文件夹,操作演示如下:

1. 点击选择类别下拉框后,会只对图片指定类别进行检测【默认检测全部类别】。
2. 点击保存按钮,会同时保存指定类别检测结果图片与其对应的YOLO标签文件。

(2)视频检测演示

点击视频图标,选择需要检测的视频,就会自动显示检测结果。也可以通过下拉框选择指定类别进行检测。点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。

(3)摄像头检测演示

点击摄像头图标,可以打开摄像头进行检测,同样可以通过下拉框选择指定类别进行检测。

(4)保存检测结果与自动标注标签文件

点击保存按钮后,对于图片,会同时保存指定类别检测结果图片与其对应的YOLO标签文件;对于视频,只会保存指定类别检测结果视频。

检测的图片与视频结果会存储在save_data目录下:

对于图片,会将指定检测目标的结果存储为目标检测中YOLO格式,方便后续进行模型进行训练使用,存储路径为:save_data/yolo_labels。结果如下图所示:

自动标注的存储格式为YOLO目标检测格式说明如下:【保存的文件名与图片名称相同】

二、YOLOv8目标检测的基本原理

1.基本原理

YOLOv8是一种前沿的目标检测技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行

YOLOv8不仅限于检测任务,还拓展到了分类、分割、跟踪,甚至姿态估计等多个领域。比如,通过使用已经训练好的yolov8x-seg.pt模型,可以实现对输入图像的实例分割操作,从而得到图像中不同物体的分割结果。此外,利用YOLOv8还可以实现实时车辆检测、车辆跟踪、实时车速检测,以及检测车辆是否超速等功能。

其主要网络结构如下:

本文基于YOLOv8的基础的目标检测模型,该多目标检测与自动标注软件的开发。支持80种类型目标的检测与结果保存,同时能批量将图片的检测结果保存为YOLO格式,便于后续模型训练的使用。

2.核心功能代码实现

2.1 YOLOv8检测图片代码

from ultralytics import YOLO
import cv2
# 加载预训练模型
model = YOLO("yolov8n.pt", task='detect') 
# model = YOLO("yolov8n.pt") task参数也可以不填写,它会根据模型去识别相应任务类别
# 检测图片
results = model("./ultralytics/assets/bus.jpg")
res = results[0].plot()
cv2.imshow("YOLOv8 Inference", res)
cv2.waitKey(0)

2.2 YOLOv8检测视频代码

import cv2
from ultralytics import YOLO
# Load the YOLOv8 model
model = YOLO('yolov8n.pt')
print('111')
# Open the video file
video_path = "1.mp4"
cap = cv2.VideoCapture(video_path)
# Loop through the video frames
while cap.isOpened():
    # Read a frame from the video
    success, frame = cap.read()
    if success:
        # Run YOLOv8 inference on the frame
        results = model(frame)
        # Visualize the results on the frame
        annotated_frame = results[0].plot()
        # Display the annotated frame
        cv2.imshow("YOLOv8 Inference", annotated_frame)
        # Break the loop if 'q' is pressed
        if cv2.waitKey(1) & 0xFF == ord("q"):
            break
    else:
        # Break the loop if the end of the video is reached
        break
# Release the video capture object and close the display window
cap.release()
cv2.destroyAllWindows()

以上便是关于YOLOv8的多目标检测与自动标注原理与代码介绍。针对以上内容,博主基于pythonPyqt5开发了一个可视化的YOLOv8多目标检测与自动标注软件,能够很好的支持图片、视频及摄像头的目标检测,支持检测类型的选择,同时支持自动标注文件保存为YOLO格式。

相关文章
|
5月前
|
机器学习/深度学习 算法 定位技术
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现裂缝的检测识别(C#代码UI界面版)
本项目基于YOLOv8模型与C#界面,结合Baumer工业相机,实现裂缝的高效检测识别。支持图像、视频及摄像头输入,具备高精度与实时性,适用于桥梁、路面、隧道等多种工业场景。
544 27
|
3月前
|
人工智能 数据安全/隐私保护 异构计算
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
399 8
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
|
6月前
|
机器学习/深度学习 监控 算法
基于mediapipe深度学习的手势数字识别系统python源码
本内容涵盖手势识别算法的相关资料,包括:1. 算法运行效果预览(无水印完整程序);2. 软件版本与配置环境说明,提供Python运行环境安装步骤;3. 部分核心代码,完整版含中文注释及操作视频;4. 算法理论概述,详解Mediapipe框架在手势识别中的应用。Mediapipe采用模块化设计,包含Calculator Graph、Packet和Subgraph等核心组件,支持实时处理任务,广泛应用于虚拟现实、智能监控等领域。
|
3月前
|
机器学习/深度学习 数据采集 算法
基于mediapipe深度学习的运动人体姿态提取系统python源码
本内容介绍了基于Mediapipe的人体姿态提取算法。包含算法运行效果图、软件版本说明、核心代码及详细理论解析。Mediapipe通过预训练模型检测人体关键点,并利用部分亲和场(PAFs)构建姿态骨架,具有模块化架构,支持高效灵活的数据处理流程。
|
3月前
|
小程序 PHP 图形学
热门小游戏源码(Python+PHP)下载-微信小程序游戏源码Unity发实战指南​
本文详解如何结合Python、PHP与Unity开发并部署小游戏至微信小程序。涵盖技术选型、Pygame实战、PHP后端对接、Unity转换适配及性能优化,提供从原型到发布的完整指南,助力开发者快速上手并发布游戏。
|
5月前
|
算法 数据可视化 数据挖掘
基于EM期望最大化算法的GMM参数估计与三维数据分类系统python源码
本内容展示了基于EM算法的高斯混合模型(GMM)聚类实现,包含完整Python代码、运行效果图及理论解析。程序使用三维数据进行演示,涵盖误差计算、模型参数更新、结果可视化等关键步骤,并附有详细注释与操作视频,适合学习EM算法与GMM模型的原理及应用。
|
5月前
|
API 数据安全/隐私保护 开发者
企业微信自动加好友软件,导入手机号批量添加微信好友,python版本源码分享
代码展示了企业微信官方API的合规使用方式,包括获取access_token、查询部门列表和创建用户等功能
|
4月前
|
并行计算 算法 Java
Python3解释器深度解析与实战教程:从源码到性能优化的全路径探索
Python解释器不止CPython,还包括PyPy、MicroPython、GraalVM等,各具特色,适用于不同场景。本文深入解析Python解释器的工作原理、内存管理机制、GIL限制及其优化策略,并介绍性能调优工具链及未来发展方向,助力开发者提升Python应用性能。
265 0
|
5月前
|
机器人 API 数据安全/隐私保护
QQ机器人插件源码,自动回复聊天机器人,python源码分享
消息接收处理:通过Flask搭建HTTP服务接收go-cqhttp推送的QQ消息47 智能回复逻辑
|
7月前
|
机器学习/深度学习 人工智能 算法
Python+YOLO v8 实战:手把手教你打造专属 AI 视觉目标检测模型
本文介绍了如何使用 Python 和 YOLO v8 开发专属的 AI 视觉目标检测模型。首先讲解了 YOLO 的基本概念及其高效精准的特点,接着详细说明了环境搭建步骤,包括安装 Python、PyCharm 和 Ultralytics 库。随后引导读者加载预训练模型进行图片验证,并准备数据集以训练自定义模型。最后,展示了如何验证训练好的模型并提供示例代码。通过本文,你将学会从零开始打造自己的目标检测系统,满足实际场景需求。
6030 0
Python+YOLO v8 实战:手把手教你打造专属 AI 视觉目标检测模型

推荐镜像

更多