基于YOLOv8的多目标检测与自动标注软件【python源码+PyqtUI界面+exe文件】【深度学习】

简介: 基于YOLOv8的多目标检测与自动标注软件【python源码+PyqtUI界面+exe文件】【深度学习】

前言

YOLOv8是一种前沿的计算机视觉技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性。这种模型属于Ultralytics平台,它的优势在于速度快且准确率高,这得益于其"You Only Look Once"(你仅需看一遍)的工作原理。不仅如此,YOLOv8不仅限于检测任务,还拓展到了分类、分割、跟踪,甚至姿态估计等多个领域。

目标检测作为计算机视觉的重要任务之一,具有广泛的应用价值。例如,在交通管理中,可以通过实时车辆检测和跟踪来更好地管理交通流量;在智能监控中,可以用于识别异常行为或危险情况等。因此,YOLOv8这类高效准确的目标检测模型在各领域的应用具有重要意义。

博主根据YOLOv8的目标检测技术,基于python与Pyqt5开发了一款简洁的支持80个类别的目标检测自动化标注软件,可支持图片、视频以及摄像头目标检测,同时支持检测类型选择图片的批量自动标注,并将检测结果保存为YOLO格式的文件,用于后续训练。

软件基本界面如下图所示:

觉得不错的小伙伴,感谢点赞、关注加收藏!如果大家有任何建议或意见,欢迎在评论区留言交流!

一、软件核心功能介绍及效果演示

软件主要功能

1. 支持80个类别的目标检测,详细目标类别见下方说明;
2. 支持图片、视频及摄像头进行检测,并显示目标位置目标总数,保存检测结果;
3. 支持图片批量检测与自动标注,并将结果保存为YOLO格式文件,用于后续模型训练;
4. 支持单个类别的目标选择与检测,并保存检测结果与YOLO标签文件。

80个目标检测类别说明

本文是基于YOLOv8的基础训练模型进行开发的,模型使用的是COCO数据集。支持80个类别的目标检测,具体目标类别名称如下:

[   '人','自行车', '汽车', '摩托车', '飞机', '公共汽车', '火车',
    '卡车', '船', '交通灯', '消防栓', '停车标志', '停车收费表',
    '长凳', '鸟', '猫', '狗', '马', '羊', '牛', '大象', '熊',
    '斑马', '长颈鹿', '背包', '雨伞','手袋', '领带', '手提箱',
    '飞盘', '雪橇', '滑雪板', '运动球', '风筝', '棒球棒',
    '棒球手套', '滑板', '冲浪板', '网球拍', '瓶子', '酒杯', '杯子',
    '叉子', '刀', '汤匙', '碗', '香蕉', '苹果', '三明治', '橙子',
    '西兰花', '胡萝卜', '热狗', '披萨', '甜甜圈', '蛋糕', '椅子',
    '沙发', '盆栽植物', '床', '餐桌', '马桶', '电视', '笔记本电脑',
    '鼠标', '遥控器', '键盘', '手机', '微波炉', '烤箱', '烤面包机',
    '水槽', '冰箱', '书', '时钟', '花瓶', '剪刀', '泰迪熊', '吹风机', '牙刷']

包含了常见的人、汽车、公共汽车、交通灯等。

(1)图片检测演示

点击图片图标,选择需要检测的图片,或者点击文件夹图标,选择需要批量检测图片所在的文件夹,操作演示如下:

1. 点击选择类别下拉框后,会只对图片指定类别进行检测【默认检测全部类别】。
2. 点击保存按钮,会同时保存指定类别检测结果图片与其对应的YOLO标签文件。

(2)视频检测演示

点击视频图标,选择需要检测的视频,就会自动显示检测结果。也可以通过下拉框选择指定类别进行检测。点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。

(3)摄像头检测演示

点击摄像头图标,可以打开摄像头进行检测,同样可以通过下拉框选择指定类别进行检测。

(4)保存检测结果与自动标注标签文件

点击保存按钮后,对于图片,会同时保存指定类别检测结果图片与其对应的YOLO标签文件;对于视频,只会保存指定类别检测结果视频。

检测的图片与视频结果会存储在save_data目录下:

对于图片,会将指定检测目标的结果存储为目标检测中YOLO格式,方便后续进行模型进行训练使用,存储路径为:save_data/yolo_labels。结果如下图所示:

自动标注的存储格式为YOLO目标检测格式说明如下:【保存的文件名与图片名称相同】

二、YOLOv8目标检测的基本原理

1.基本原理

YOLOv8是一种前沿的目标检测技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行

YOLOv8不仅限于检测任务,还拓展到了分类、分割、跟踪,甚至姿态估计等多个领域。比如,通过使用已经训练好的yolov8x-seg.pt模型,可以实现对输入图像的实例分割操作,从而得到图像中不同物体的分割结果。此外,利用YOLOv8还可以实现实时车辆检测、车辆跟踪、实时车速检测,以及检测车辆是否超速等功能。

其主要网络结构如下:

本文基于YOLOv8的基础的目标检测模型,该多目标检测与自动标注软件的开发。支持80种类型目标的检测与结果保存,同时能批量将图片的检测结果保存为YOLO格式,便于后续模型训练的使用。

2.核心功能代码实现

2.1 YOLOv8检测图片代码

from ultralytics import YOLO
import cv2
# 加载预训练模型
model = YOLO("yolov8n.pt", task='detect') 
# model = YOLO("yolov8n.pt") task参数也可以不填写,它会根据模型去识别相应任务类别
# 检测图片
results = model("./ultralytics/assets/bus.jpg")
res = results[0].plot()
cv2.imshow("YOLOv8 Inference", res)
cv2.waitKey(0)

2.2 YOLOv8检测视频代码

import cv2
from ultralytics import YOLO
# Load the YOLOv8 model
model = YOLO('yolov8n.pt')
print('111')
# Open the video file
video_path = "1.mp4"
cap = cv2.VideoCapture(video_path)
# Loop through the video frames
while cap.isOpened():
    # Read a frame from the video
    success, frame = cap.read()
    if success:
        # Run YOLOv8 inference on the frame
        results = model(frame)
        # Visualize the results on the frame
        annotated_frame = results[0].plot()
        # Display the annotated frame
        cv2.imshow("YOLOv8 Inference", annotated_frame)
        # Break the loop if 'q' is pressed
        if cv2.waitKey(1) & 0xFF == ord("q"):
            break
    else:
        # Break the loop if the end of the video is reached
        break
# Release the video capture object and close the display window
cap.release()
cv2.destroyAllWindows()

以上便是关于YOLOv8的多目标检测与自动标注原理与代码介绍。针对以上内容,博主基于pythonPyqt5开发了一个可视化的YOLOv8多目标检测与自动标注软件,能够很好的支持图片、视频及摄像头的目标检测,支持检测类型的选择,同时支持自动标注文件保存为YOLO格式。

相关文章
|
4月前
|
机器学习/深度学习 算法 定位技术
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现裂缝的检测识别(C#代码UI界面版)
本项目基于YOLOv8模型与C#界面,结合Baumer工业相机,实现裂缝的高效检测识别。支持图像、视频及摄像头输入,具备高精度与实时性,适用于桥梁、路面、隧道等多种工业场景。
456 27
|
5月前
|
机器学习/深度学习 监控 算法
基于mediapipe深度学习的手势数字识别系统python源码
本内容涵盖手势识别算法的相关资料,包括:1. 算法运行效果预览(无水印完整程序);2. 软件版本与配置环境说明,提供Python运行环境安装步骤;3. 部分核心代码,完整版含中文注释及操作视频;4. 算法理论概述,详解Mediapipe框架在手势识别中的应用。Mediapipe采用模块化设计,包含Calculator Graph、Packet和Subgraph等核心组件,支持实时处理任务,广泛应用于虚拟现实、智能监控等领域。
|
4月前
|
机器学习/深度学习 存储 监控
基于深度学习YOLO框架的城市道路损伤检测与评估项目系统【附完整源码+数据集】
本项目基于深度学习的YOLO框架,成功实现了城市道路损伤的自动检测与评估。通过YOLOv8模型,我们能够高效地识别和分类路面裂缝、井盖移位、坑洼路面等常见的道路损伤类型。系统的核心优势在于其高效性和实时性,能够实时监控城市道路,自动标注损伤类型,并生成损伤评估报告。
240 0
基于深度学习YOLO框架的城市道路损伤检测与评估项目系统【附完整源码+数据集】
|
4月前
|
机器学习/深度学习 自动驾驶 算法
基于深度学习的YOLO框架的7种交通场景识别项目系统【附完整源码+数据集】
在智慧交通和智能驾驶日益普及的今天,准确识别复杂交通场景中的关键元素已成为自动驾驶系统的核心能力之一。传统的图像处理技术难以适应高动态、复杂天气、多目标密集的交通环境,而基于深度学习的目标检测算法,尤其是YOLO(You Only Look Once)系列,因其检测速度快、精度高、可部署性强等特点,在交通场景识别中占据了重要地位。
477 0
基于深度学习的YOLO框架的7种交通场景识别项目系统【附完整源码+数据集】
|
11月前
|
机器学习/深度学习 数据可视化 TensorFlow
使用Python实现深度学习模型的分布式训练
使用Python实现深度学习模型的分布式训练
444 73
|
10月前
|
机器学习/深度学习 监控 算法
基于yolov4深度学习网络的排队人数统计系统matlab仿真,带GUI界面
本项目基于YOLOv4深度学习网络,利用MATLAB 2022a实现排队人数统计的算法仿真。通过先进的计算机视觉技术,系统能自动、准确地检测和统计监控画面中的人数,适用于银行、车站等场景,优化资源分配和服务管理。核心程序包含多个回调函数,用于处理用户输入及界面交互,确保系统的高效运行。仿真结果无水印,操作步骤详见配套视频。
284 18
|
11月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面
本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。
282 31
|
11月前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费市场分析的深度学习模型
使用Python实现智能食品消费市场分析的深度学习模型
296 36
|
11月前
|
机器学习/深度学习 数据采集 搜索推荐
使用Python实现智能食品消费偏好预测的深度学习模型
使用Python实现智能食品消费偏好预测的深度学习模型
328 23
|
11月前
|
机器学习/深度学习 数据采集 供应链
使用Python实现智能食品消费需求分析的深度学习模型
使用Python实现智能食品消费需求分析的深度学习模型
255 21