【阿旭机器学习实战】【29】产品广告投放实战案例---线性回归

简介: 【阿旭机器学习实战】【29】产品广告投放实战案例---线性回归

问题描述

你所在的公司在电视上做产品广告, 收集到了电视广告投入x(以百万为单位)与产品销售量y(以亿为单位)的数据. 你作为公司的数据科学家, 希望通过分析这些数据, 了解电视广告投入x(以百万为单位)与产品销售量y的关系.

假设x与y的之间的关系是线性的, 也就是说 y = ax + b. 通过线性回归(Linear Regression), 我们就可以得知 a 和 b 的值. 于是我们在未来做规划的时候, 通过电视广告投入x, 就可以预测产品销售量y, 从而可以提前做好生产和物流, 仓储的规划. 为客户提供更好的服务.

数据处理过程及源码

关注GZH:阿旭算法与机器学习,回复:“ML29”即可获取本文数据集、源码与项目文档,欢迎共同学习交流

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
data = pd.read_csv("./data/Advertising.csv")
data.head()
TV sales
0 230.1 22.1
1 44.5 10.4
2 17.2 9.3
3 151.5 18.5
4 180.8 12.9
data.columns
Index(['TV', 'sales'], dtype='object')

通过数据可视化分析数据

plt.figure(figsize=(16, 8))
plt.scatter(data['TV'], data['sales'], c ='black')
plt.xlabel("Money spent on TV ads")
plt.ylabel("Sales")
plt.show()

训练线性回归模型

X = data['TV'].values.reshape(-1,1)
y = data['sales'].values.reshape(-1,1)
reg = LinearRegression()
reg.fit(X, y)
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None,
         normalize=False)
print('a = {:.5}'.format(reg.coef_[0][0]))
print('b = {:.5}'.format(reg.intercept_[0]))
print("线性模型为: Y = {:.5}X + {:.5} ".format(reg.coef_[0][0], reg.intercept_[0]))
a = 0.047537
b = 7.0326
线性模型为: Y = 0.047537X + 7.0326 

可视化训练好的线性回归模型

predictions = reg.predict(X)
plt.figure(figsize=(16, 8))
plt.scatter(data['TV'], data['sales'], c ='black')
plt.plot(data['TV'], predictions,c ='blue', linewidth=2)
plt.xlabel("Money spent on TV ads")
plt.ylabel("Sales")
plt.show()

结果预测

# 做预测
假设公司希望在下一个季度投一亿元的电视广告, 那么预期的产品销量会是多少呢?
predictions = reg.predict([[100])
print('投入一亿元的电视广告, 预计的销售量为{:.5}亿'.format( predictions[0][0]) )
投入一亿元的电视广告, 预计的销售量为11.786亿


相关文章
|
4天前
|
机器学习/深度学习 传感器 运维
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
本文探讨了时间序列分析中数据缺失的问题,并通过实际案例展示了如何利用机器学习技术进行缺失值补充。文章构建了一个模拟的能源生产数据集,采用线性回归和决策树回归两种方法进行缺失值补充,并从统计特征、自相关性、趋势和季节性等多个维度进行了详细评估。结果显示,决策树方法在处理复杂非线性模式和保持数据局部特征方面表现更佳,而线性回归方法则适用于简单的线性趋势数据。文章最后总结了两种方法的优劣,并给出了实际应用建议。
27 7
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
|
11天前
|
机器学习/深度学习 人工智能 算法
探索机器学习:从线性回归到深度学习
本文将带领读者从基础的线性回归模型开始,逐步深入到复杂的深度学习网络。我们将通过代码示例,展示如何实现这些算法,并解释其背后的数学原理。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和知识。让我们一起踏上这段激动人心的旅程吧!
|
25天前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的线性回归模型
本文深入探讨了机器学习中广泛使用的线性回归模型,从其基本概念和数学原理出发,逐步引导读者理解模型的构建、训练及评估过程。通过实例分析与代码演示,本文旨在为初学者提供一个清晰的学习路径,帮助他们在实践中更好地应用线性回归模型解决实际问题。
|
26天前
|
机器学习/深度学习 自然语言处理 算法
深入理解机器学习算法:从线性回归到神经网络
深入理解机器学习算法:从线性回归到神经网络
|
28天前
|
机器学习/深度学习 数据采集 数据可视化
Python数据科学实战:从Pandas到机器学习
Python数据科学实战:从Pandas到机器学习
|
1月前
|
机器学习/深度学习 TensorFlow API
机器学习实战:TensorFlow在图像识别中的应用探索
【10月更文挑战第28天】随着深度学习技术的发展,图像识别取得了显著进步。TensorFlow作为Google开源的机器学习框架,凭借其强大的功能和灵活的API,在图像识别任务中广泛应用。本文通过实战案例,探讨TensorFlow在图像识别中的优势与挑战,展示如何使用TensorFlow构建和训练卷积神经网络(CNN),并评估模型的性能。尽管面临学习曲线和资源消耗等挑战,TensorFlow仍展现出广阔的应用前景。
59 5
|
22天前
|
机器学习/深度学习 人工智能 TensorFlow
基于TensorFlow的深度学习模型训练与优化实战
基于TensorFlow的深度学习模型训练与优化实战
62 0
|
25天前
|
机器学习/深度学习 数据采集 人工智能
机器学习入门:Python与scikit-learn实战
机器学习入门:Python与scikit-learn实战
36 0
|
21天前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
65 4
|
17天前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
36 1