【从零开始学习深度学习】44. 图像增广的几种常用方式并使用图像增广训练模型【Pytorch】

简介: 【从零开始学习深度学习】44. 图像增广的几种常用方式并使用图像增广训练模型【Pytorch】

首先,导入实验所需的包或模块。

%matplotlib inline
import time
import torch
from torch import nn, optim
from torch.utils.data import Dataset, DataLoader
import torchvision
from PIL import Image
import sys
import d2lzh_pytorch as d2l
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

1. 常用的图像增广方法

我们来读取一张形状为400 × 500 400\times 500400×500(高和宽分别为400像素和500像素)的图像作为实验的样例。

d2l.set_figsize()
img = Image.open('./img/cat1.jpg')
d2l.plt.imshow(img)

下面定义绘图函数show_images

def show_images(imgs, num_rows, num_cols, scale=2):
    figsize = (num_cols * scale, num_rows * scale)
    _, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)
    for i in range(num_rows):
        for j in range(num_cols):
            axes[i][j].imshow(imgs[i * num_cols + j])
            axes[i][j].axes.get_xaxis().set_visible(False)
            axes[i][j].axes.get_yaxis().set_visible(False)
    return axes

大部分图像增广方法都有一定的随机性。为了方便观察图像增广的效果,接下来我们定义一个辅助函数apply。这个函数对输入图像img多次运行图像增广方法aug并展示所有的结果。

def apply(img, aug, num_rows=2, num_cols=4, scale=1.5):
    # aug为传入的图像增广方法函数
    Y = [aug(img) for _ in range(num_rows * num_cols)]
    show_images(Y, num_rows, num_cols, scale)

1.1 翻转和裁剪

左右翻转图像通常不改变物体的类别。它是最早也是最广泛使用的一种图像增广方法。下面我们通过torchvision.transforms模块创建RandomHorizontalFlip实例来实现一半概率的图像水平(左右)翻转。

# transforms.RandomHorizontalFlip(p=0.5)默认p=0.5表示一半概率翻转
apply(img, torchvision.transforms.RandomHorizontalFlip())

上下翻转不如左右翻转通用。但是至少对于样例图像,上下翻转不会造成识别障碍。下面我们创建RandomVerticalFlip实例来实现一半概率的图像垂直(上下)翻转。

apply(img, torchvision.transforms.RandomVerticalFlip())

在我们使用的样例图像里,猫在图像正中间,但一般情况下可能不是这样。之前介绍了池化层能降低卷积层对目标位置的敏感度。除此之外,我们还可以通过对图像随机裁剪来让物体以不同的比例出现在图像的不同位置,这同样能够降低模型对目标位置的敏感性。

在下面的代码里,我们每次随机裁剪出一块面积为原面积10 % ∼ 100 % 10\% \sim 100\%10%100%的区域,且该区域的宽和高之比随机取自0.5 ∼ 2 0.5 \sim 20.52,然后再将该区域的宽和高分别缩放到200像素。若无特殊说明,文中a aab bb之间的随机数指的是从区间[ a , b ] [a,b][a,b]中随机均匀采样所得到的连续值。

shape_aug = torchvision.transforms.RandomResizedCrop(200, scale=(0.1, 1), ratio=(0.5, 2))
apply(img, shape_aug)

1.2 变化颜色

另一类增广方法是变化颜色。我们可以从4个方面改变图像的颜色:亮度(brightness)、对比度(contrast)、饱和度(saturation)和色调(hue)。在下面的例子里,我们将图像的亮度随机变化为原图亮度的50 % 50\%50%1 − 0.5 1-0.510.5∼ 150 % \sim 150\%150%1 + 0.5 1+0.51+0.5)。

apply(img, torchvision.transforms.ColorJitter(brightness=0.5))

我们也可以随机变化图像的色调。

apply(img, torchvision.transforms.ColorJitter(hue=0.5))

类似地,我们也可以随机变化图像的对比度。

apply(img, torchvision.transforms.ColorJitter(contrast=0.5))

我们也可以同时设置如何随机变化图像的亮度(brightness)、对比度(contrast)、饱和度(saturation)和色调(hue)。

color_aug = torchvision.transforms.ColorJitter(
    brightness=0.5, contrast=0.5, saturation=0.5, hue=0.5)
apply(img, color_aug)

1.3 叠加多个图像增广方法

实际应用中我们会将多个图像增广方法叠加使用。我们可以通过Compose实例将上面定义的多个图像增广方法叠加起来,再应用到每张图像之上。

augs = torchvision.transforms.Compose([
    torchvision.transforms.RandomHorizontalFlip(), color_aug, shape_aug])
apply(img, augs)

2 使用图像增广训练模型

下面我们来看一个将图像增广应用在实际训练中的例子。这里我们使用CIFAR-10数据集,而不是之前我们一直使用的Fashion-MNIST数据集。这是因为Fashion-MNIST数据集中物体的位置和尺寸都已经经过归一化处理,而CIFAR-10数据集中物体的颜色和大小区别更加显著。下面展示了CIFAR-10数据集中前32张训练图像。

all_imges = torchvision.datasets.CIFAR10(train=True, root="~/Datasets/CIFAR", download=True)
# all_imges的每一个元素都是(image, label)
show_images([all_imges[i][0] for i in range(32)], 4, 8, scale=0.8);

为了在预测时得到确定的结果,我们通常只将图像增广应用在训练样本上,而不在预测时使用含随机操作的图像增广。在这里我们只使用最简单的随机左右翻转。此外,我们使用ToTensor将小批量图像转成PyTorch需要的格式,即形状为(批量大小, 通道数, 高, 宽)、值域在0到1之间且类型为32位浮点数。

flip_aug = torchvision.transforms.Compose([
     torchvision.transforms.RandomHorizontalFlip(),
     torchvision.transforms.ToTensor()])
no_aug = torchvision.transforms.Compose([
     torchvision.transforms.ToTensor()])

接下来我们定义一个函数来读取图像并应用图像增广。

num_workers = 0 if sys.platform.startswith('win32') else 4
def load_cifar10(is_train, augs, batch_size, root="~/Datasets/CIFAR"):
    dataset = torchvision.datasets.CIFAR10(root=root, train=is_train, transform=augs, download=True)
    return DataLoader(dataset, batch_size=batch_size, shuffle=is_train, num_workers=num_workers)

2.1 训练模型

我们在CIFAR-10数据集上训练之前介绍的残差网络ResNet-18模型。

我们先定义train函数使用GPU训练并评价模型。

def train(train_iter, test_iter, net, loss, optimizer, device, num_epochs):
    net = net.to(device)
    print("training on ", device)
    batch_count = 0
    for epoch in range(num_epochs):
        train_l_sum, train_acc_sum, n, start = 0.0, 0.0, 0, time.time()
        for X, y in train_iter:
            X = X.to(device)
            y = y.to(device)
            y_hat = net(X)
            l = loss(y_hat, y)
            optimizer.zero_grad()
            l.backward()
            optimizer.step()
            train_l_sum += l.cpu().item()
            train_acc_sum += (y_hat.argmax(dim=1) == y).sum().cpu().item()
            n += y.shape[0]
            batch_count += 1
        test_acc = d2l.evaluate_accuracy(test_iter, net)
        print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f, time %.1f sec'
              % (epoch + 1, train_l_sum / batch_count, train_acc_sum / n, test_acc, time.time() - start))

然后就可以定义train_with_data_aug函数使用图像增广来训练模型了。该函数使用Adam算法作为训练使用的优化算法,然后将图像增广应用于训练数据集之上,最后调用刚才定义的train函数训练并评价模型。

def train_with_data_aug(train_augs, test_augs, lr=0.001):
    batch_size, net = 256, d2l.resnet18(10)
    optimizer = torch.optim.Adam(net.parameters(), lr=lr)
    loss = torch.nn.CrossEntropyLoss()
    # 对训练数据使用图像增广
    train_iter = load_cifar10(True, train_augs, batch_size)
    # 对测试数据不使用图像增广
    test_iter = load_cifar10(False, test_augs, batch_size)
    train(train_iter, test_iter, net, loss, optimizer, device, num_epochs=10)

下面使用随机左右翻转的图像增广来训练模型。

train_with_data_aug(flip_aug, no_aug)

输出:

training on  cuda
epoch 1, loss 1.3615, train acc 0.505, test acc 0.493, time 123.2 sec
epoch 2, loss 0.5003, train acc 0.645, test acc 0.620, time 123.0 sec
epoch 3, loss 0.2811, train acc 0.703, test acc 0.616, time 123.1 sec
epoch 4, loss 0.1890, train acc 0.735, test acc 0.686, time 123.0 sec
epoch 5, loss 0.1346, train acc 0.765, test acc 0.671, time 123.1 sec
epoch 6, loss 0.1029, train acc 0.787, test acc 0.674, time 123.1 sec
epoch 7, loss 0.0803, train acc 0.804, test acc 0.749, time 123.1 sec
epoch 8, loss 0.0644, train acc 0.822, test acc 0.717, time 123.1 sec
epoch 9, loss 0.0526, train acc 0.836, test acc 0.750, time 123.0 sec
epoch 10, loss 0.0433, train acc 0.851, test acc 0.754, time 123.1 sec

总结

  • 图像增广基于现有训练数据生成随机图像从而应对过拟合。
  • 为了在预测时得到确定的结果,通常只将图像增广应用在训练样本上,而不在预测时使用含随机操作的图像增广。
  • 可以从torchvision的transforms模块中获取有关图片增广的类。
相关文章
|
13天前
|
机器学习/深度学习 数据可视化 算法
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
神经常微分方程(Neural ODEs)是深度学习领域的创新模型,将神经网络的离散变换扩展为连续时间动力系统。本文基于Torchdyn库介绍Neural ODE的实现与训练方法,涵盖数据集构建、模型构建、基于PyTorch Lightning的训练及实验结果可视化等内容。Torchdyn支持多种数值求解算法和高级特性,适用于生成模型、时间序列分析等领域。
156 77
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
|
3月前
|
机器学习/深度学习 数据采集 人工智能
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】随着人工智能的发展,深度学习技术正逐步应用于教育领域,特别是个性化学习系统中。通过分析学生的学习数据,深度学习模型能够精准预测学生的学习表现,并为其推荐合适的学习资源和规划学习路径,从而提供更加高效、有趣和个性化的学习体验。
281 9
|
3月前
|
机器学习/深度学习 监控 PyTorch
深度学习工程实践:PyTorch Lightning与Ignite框架的技术特性对比分析
在深度学习框架的选择上,PyTorch Lightning和Ignite代表了两种不同的技术路线。本文将从技术实现的角度,深入分析这两个框架在实际应用中的差异,为开发者提供客观的技术参考。
76 7
|
3月前
|
机器学习/深度学习 编解码 算法
什么是超分辨率?浅谈一下基于深度学习的图像超分辨率技术
超分辨率技术旨在提升图像或视频的清晰度,通过增加单位长度内的采样点数量来提高空间分辨率。基于深度学习的方法,如SRCNN、VDSR、SRResNet等,通过卷积神经网络和残差学习等技术,显著提升了图像重建的质量。此外,基于参考图像的超分辨率技术通过利用高分辨率参考图像,进一步提高了重建图像的真实感和细节。
|
4月前
|
机器学习/深度学习 存储 自然语言处理
深度学习之少样本学习
少样本学习(Few-Shot Learning, FSL)是深度学习中的一个重要研究领域,其目标是在只有少量标注样本的情况下,训练出能够很好地泛化到新类别或新任务的模型。
89 2
|
3月前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习的奇迹:如何用神经网络识别图像
【10月更文挑战第33天】在这篇文章中,我们将探索深度学习的奇妙世界,特别是卷积神经网络(CNN)在图像识别中的应用。我们将通过一个简单的代码示例,展示如何使用Python和Keras库构建一个能够识别手写数字的神经网络。这不仅是对深度学习概念的直观介绍,也是对技术实践的一次尝试。让我们一起踏上这段探索之旅,看看数据、模型和代码是如何交织在一起,创造出令人惊叹的结果。
56 0
|
3月前
|
安全 搜索推荐 机器学习/深度学习
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】在人工智能的推动下,个性化学习系统逐渐成为教育领域的重要趋势。深度学习作为AI的核心技术,在构建个性化学习系统中发挥关键作用。本文探讨了深度学习在个性化推荐系统、智能辅导系统和学习行为分析中的应用,并提供了代码示例,展示了如何使用Keras构建模型预测学生对课程的兴趣。尽管面临数据隐私和模型可解释性等挑战,深度学习仍有望为教育带来更个性化和高效的学习体验。
247 0
|
20天前
|
机器学习/深度学习 搜索推荐 PyTorch
基于昇腾用PyTorch实现传统CTR模型WideDeep网络
本文介绍了如何在昇腾平台上使用PyTorch实现经典的WideDeep网络模型,以处理推荐系统中的点击率(CTR)预测问题。
185 66
|
4月前
|
算法 PyTorch 算法框架/工具
Pytorch学习笔记(九):Pytorch模型的FLOPs、模型参数量等信息输出(torchstat、thop、ptflops、torchsummary)
本文介绍了如何使用torchstat、thop、ptflops和torchsummary等工具来计算Pytorch模型的FLOPs、模型参数量等信息。
605 2
|
2月前
|
机器学习/深度学习 人工智能 PyTorch
Transformer模型变长序列优化:解析PyTorch上的FlashAttention2与xFormers
本文探讨了Transformer模型中变长输入序列的优化策略,旨在解决深度学习中常见的计算效率问题。文章首先介绍了批处理变长输入的技术挑战,特别是填充方法导致的资源浪费。随后,提出了多种优化技术,包括动态填充、PyTorch NestedTensors、FlashAttention2和XFormers的memory_efficient_attention。这些技术通过减少冗余计算、优化内存管理和改进计算模式,显著提升了模型的性能。实验结果显示,使用FlashAttention2和无填充策略的组合可以将步骤时间减少至323毫秒,相比未优化版本提升了约2.5倍。
85 3
Transformer模型变长序列优化:解析PyTorch上的FlashAttention2与xFormers