基于Hive的招聘网站的大数据分析系统

简介: 基于Hive的招聘网站的大数据分析系统

1. 数据采集

首先,我们需要通过网络爬虫技术从招聘网站上获取数据。爬虫可以自动地访问网站并抓取所需的数据,例如职位信息、公司信息、薪资水平等。在选择爬虫工具时,需要考虑目标网站的结构和反爬虫机制,确保能够稳定高效地获取数据。

import csv
import time

import requests
import execjs

from storage.csv2mysql import sync_data2db


def read_js_code():
    f= open('/Users/shareit/workspace/chart_show/demo.js',encoding='utf-8')
    txt = f.read()
    js_code = execjs.compile(txt)
    ckId = js_code.call('r',32)
    return ckId
    

def post_data():
    read_js_code()
    url = "https://api-c.liepin.com/api/com.liepin.searchfront4c.pc-search-job"
    headers = {
        'Accept': 'application/json, text/plain, */*',
        'Accept-Encoding': 'gzip, deflate, br'
    }
    list = ["H01$H0001","H01$H0002",
            "H01$H0003","H01$H0004","H01$H0005",
            "H01$H0006","H01$H0007","H01$H0008",
            "H01$H0009","H01$H00010","H02$H0018","H02$H0019","H03$H0022",
            "H03$H0023","H03$H0024","H03$H0025","H04$H0030","H04$H0031",
            "H04$H0032","H05$H05","H06$H06","H07$H07","H08$H08"]
    for name in list:
        print("-------{}---------".format(name))
        for i in range(10):
            print("------------第{}页-----------".format(i))
            data = {"data": {"mainSearchPcConditionForm":
                                 {"city": "410", "dq": "410", "pubTime": "", "currentPage": i, "pageSize": 40, "key": "",
                                  "suggestTag": "", "workYearCode": "1", "compId": "", "compName": "", "compTag": "",
                                  "industry": name, "salary": "", "jobKind": "", "compScale": "", "compKind": "", "compStage": "",
                                  "eduLevel": ""},
                             "passThroughForm":
                                 {"scene": "page", "skId": "z33lm3jhwza7k1xjvcyn8lb8e9ghxx1b",
                                  "fkId": "z33lm3jhwza7k1xjvcyn8lb8e9ghxx1b",
                                  "ckId": read_js_code(),
                                  'sfrom': 'search_job_pc'}}}
            response = requests.post(url=url, json=data, headers=headers)
            time.sleep(2)
            parse_data(response)


def parse_data(response):
    try:
        jobCardList = response.json()['data']['data']['jobCardList']
        sync_data2db(jobCardList)
    except Exception as e:
        return

if __name__ == '__main__':
    post_data()

2. 数据预处理

获取到的原始数据往往杂乱无章,需要进行预处理才能进行后续的分析工作。预处理包括数据清洗、去重、缺失值处理、数据格式转换等环节,以确保数据的质量和一致性。在这一阶段,还可以利用自然语言处理技术对文本数据进行分词、词性标注等操作,为后续的分析提供更多维度的信息。然后将数据加载到hive中进行分析。

CREATE TABLE mydb.data (
  id INT,
  title STRING,
  city STRING,
  salary STRING,
  campus_job_kind STRING,
  labels STRING,
  compName STRING,
  compIndustry STRING,
  compScale STRING
)
COMMENT '数据表'
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
STORED AS TEXTFILE;

LOAD DATA INPATH '/file.csv' OVERWRITE INTO TABLE mydb.data;

3. 数据分析

有了清洗和存储好的数据,接下来就是进行数据分析。数据分析的方法多种多样,可以根据具体的需求选择合适的分析技术和模型。常见的数据分析技术包括统计分析、机器学习、文本挖掘等。通过对

招聘数据的分析,我们可以发现人才市场的热点行业、热门职位、薪资水平等信息,为企业招聘决策提供参考。

def city_count_from_db():
    tuple = []
    try:
        with connection.cursor() as cursor:
            select_query = "select * from (select city,count(1) cnt FROM data group by city)a limit 10"
            cursor.execute(select_query)
            result = cursor.fetchall()
            for row in result:
                tuple.append((row['city'],row['cnt']))
    except Exception as e:
        print(e)
    return tuple



def salary_avg_from_db():
    x=[]
    y=[]
    try:
        with connection.cursor() as cursor:
            select_query = "select * from (select city,avg(salary) avg FROM data group by city)a limit 20"
            cursor.execute(select_query)
            result = cursor.fetchall()
            for row in result:
                x.append(row['city'])
                y.append(int(row['avg']))
    except Exception as e:
        print(e)
    return x,y


def salary_industry_from_db():
    x=[]
    y=[]
    try:
        with connection.cursor() as cursor:
            select_query = "select * from (select compIndustry,avg(salary) avg FROM data group by compIndustry)a limit 20"
            cursor.execute(select_query)
            result = cursor.fetchall()
            for row in result:
                x.append(row['compIndustry'])
                y.append(int(row['avg']))
    except Exception as e:
        print(e)
    return x,y

def salary_title_from_db():
    x=[]
    y=[]
    try:
        with connection.cursor() as cursor:
            select_query = "select title,count(1) cnt from data group by title order by cnt desc limit 10"
            cursor.execute(select_query)
            result = cursor.fetchall()
            for row in result:
                x.append(row['title'])
                y.append(int(row['cnt']))
    except Exception as e:
        print(e)
    return x,y

def comany_from_db():
    tuple = []
    try:
        with connection.cursor() as cursor:
            select_query = "select compName,count(1) cnt FROM data group by compName order by cnt desc limit 10"
            cursor.execute(select_query)
            result = cursor.fetchall()
            for row in result:
                tuple.append((row['compName'], row['cnt']))
    except Exception as e:
        print(e)
    return tuple

标题4. 数据可视化

最后,为了更直观地展示分析结果,我们利用Django框架搭建了数据可视化的平台。Django是一个高效的Web开发框架,通过它可以快速构建出美观、易用的数据可视化界面。在可视化界面上,我们可以展示招聘数据的各种统计图表、热点地图、词云等,帮助用户更直观地理解数据背后的信息。

def bar_chart(request):
    line = Line()
    x,y=salary_avg()
    line.add_xaxis(x)
    line.add_yaxis("全国应届毕业生就业城市薪资分布图", y)

    line1 = Line().set_global_opts(
        xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=90)),
    )
    x, y = title_count()
    line1.add_xaxis(x)
    line1.add_yaxis("全国应届毕业生就业岗位分布图", y)


    # 创建条形图
    bar = Bar().set_global_opts(
        xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=90)),
    )
    x,y = industry_avg()
    bar.add_xaxis(x)
    bar.add_yaxis("全国应届毕业生就业领域薪资分布图", y)

    # 创建饼图
    pie = Pie()
    tuple = city_top()
    pie.add("全国应届毕业生就业城市top10",tuple)

    pie1 = Pie()
    tuple1 = comany_count()
    pie1.add("全国应届毕业生就业公司top10",tuple1)

    # 获取图表的JavaScript代码
    line_js = line.render_embed()
    bar_js = bar.render_embed()
    pie_js = pie.render_embed()
    line1_js = line1.render_embed()
    pie1_js = pie1.render_embed()
    return render(request, 'charts/bar_chart.html', {'line': line_js, 'bar': bar_js, 'pie': pie_js,'line1': line1_js,'pie1': pie1_js})


下面是数据分析的展示结果,喜欢的可以加个收藏点个关注哦,更多毕设相关内容,小编将持续分享哦


相关文章
|
5天前
|
存储 机器学习/深度学习 SQL
大数据处理与分析技术
大数据处理与分析技术
25 2
|
8天前
|
存储 监控 数据挖掘
【Clikhouse 探秘】ClickHouse 物化视图:加速大数据分析的新利器
ClickHouse 的物化视图是一种特殊表,通过预先计算并存储查询结果,显著提高查询性能,减少资源消耗,适用于实时报表、日志分析、用户行为分析、金融数据分析和物联网数据分析等场景。物化视图的创建、数据插入、更新和一致性保证通过事务机制实现。
46 14
|
13天前
|
消息中间件 分布式计算 大数据
数据为王:大数据处理与分析技术在企业决策中的力量
【10月更文挑战第29天】在信息爆炸的时代,大数据处理与分析技术为企业提供了前所未有的洞察力和决策支持。本文探讨了大数据技术在企业决策中的重要性和实际应用,包括数据的力量、实时分析、数据驱动的决策以及数据安全与隐私保护。通过这些技术,企业能够从海量数据中提取有价值的信息,预测市场趋势,优化业务流程,从而在竞争中占据优势。
45 2
|
14天前
|
数据采集 机器学习/深度学习 搜索推荐
大数据与社交媒体:用户行为分析
【10月更文挑战第31天】在数字化时代,社交媒体成为人们生活的重要部分,大数据技术的发展使其用户行为分析成为企业理解用户需求、优化产品设计和提升用户体验的关键手段。本文探讨了大数据在社交媒体用户行为分析中的应用,包括用户画像构建、情感分析、行为路径分析和社交网络分析,以及面临的挑战与机遇。
|
14天前
|
机器学习/深度学习 搜索推荐 大数据
大数据与教育:学生表现分析的工具
【10月更文挑战第31天】在数字化时代,大数据成为改善教育质量的重要工具。本文探讨了大数据在学生表现分析中的应用,介绍学习管理系统、智能评估系统、情感分析技术和学习路径优化等工具,帮助教育者更好地理解学生需求,制定个性化教学策略,提升教学效果。尽管面临数据隐私等挑战,大数据仍为教育创新带来巨大机遇。
|
17天前
|
人工智能 供应链 搜索推荐
大数据分析:解锁商业智能的秘密武器
【10月更文挑战第31天】在信息爆炸时代,大数据分析成为企业解锁商业智能的关键工具。本文探讨了大数据分析在客户洞察、风险管理、供应链优化、产品开发和决策支持等方面的应用,强调了明确分析目标、选择合适工具、培养专业人才和持续优化的重要性,并展望了未来的发展趋势。
|
20天前
|
数据采集 分布式计算 OLAP
最佳实践:AnalyticDB在企业级大数据分析中的应用案例
【10月更文挑战第22天】在数字化转型的大潮中,企业对数据的依赖程度越来越高。如何高效地处理和分析海量数据,从中提取有价值的洞察,成为企业竞争力的关键。作为阿里云推出的一款实时OLAP数据库服务,AnalyticDB(ADB)凭借其强大的数据处理能力和亚秒级的查询响应时间,已经在多个行业和业务场景中得到了广泛应用。本文将从个人的角度出发,分享多个成功案例,展示AnalyticDB如何助力企业在广告投放效果分析、用户行为追踪、财务报表生成等领域实现高效的数据处理与洞察发现。
48 0
|
1月前
|
存储 机器学习/深度学习 分布式计算
大数据技术——解锁数据的力量,引领未来趋势
【10月更文挑战第5天】大数据技术——解锁数据的力量,引领未来趋势
|
3天前
|
存储 分布式计算 数据挖掘
数据架构 ODPS 是什么?
数据架构 ODPS 是什么?
42 7
|
3天前
|
存储 分布式计算 大数据
大数据 优化数据读取
【11月更文挑战第4天】
14 2