大数据行业应用之Hive数据分析航班线路相关的各项指标

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 大数据行业应用之Hive数据分析航班线路相关的各项指标

项目概要

1.项目背景:

飞机航班经常会因为各种原因,如天气原因,雷雨、大雾、大风等情况,或机场原因,导致航班的延误甚至取消,现在有一批航班的历史数据,基于这些数据,对航班的各种重要指标做统计分析,如最繁忙航线、某机场起降最频繁时段等等;最后,利用机器学习,对航班延误做预测,旅客可参考这些统计及预测结果调整行程安排。

2.建设目标:

亲自动手搭建项目所需的实验环境:搭建hadoop集群、分析航空数据的一些指标;

需求分析

1.需求介绍:分析航班相关的各项指标

2.功能点:数据清洗

功能描述:对航班数据flights.csv及airport.csv文件进行数据的清洗,备接下来的数据分析使用。

3.功能点:打开hive分析环境

功能描述:打开数据分析的环境,使用hive命令行的方式分析数据;

4.功能点:读取航班及机场信息

功能描述:使用hive来读取航班及机场信息,并分别注册成临时表,在接下来的分析中会用到这两个视图。

5.功能点:分析共有哪些航班?

功能描述:分析共有哪些航班,对重复的航班进行过滤,只要从航班数据中将经过去重后的航班号求出即可

6.功能点:航班最频繁的5条航线

功能描述:航班从起飞机场origin到落地机场dest(即:origion -> dest),简单定义为航线,现要统计最频繁的5条航线,先将数据按照origin,dest分组,再按每组的个数降序排序,取头5条,从而统计出来航班最频繁的5条航线的相关信息

7.功能点:航班最空闲的航线

功能描述:与上一个需求基本相似,排序顺序相反,以一条数据

8.功能点:航班最多的机场统计

功能描述:将航班flights数据按照origin起飞地分组,降序排序,取头一个

9.功能点:延误最少航班统计

功能描述:先获得每架航班的出发总延误时间,进行降序排序,取头一条;即:对flights数据按照航班分组,求每组的延误时间总和,并降序排序,取头一条

解决方案

架构简介:

本案例使用Hadoop作为底层支持,其中HDFS提供底层存储支持,Yarn提供集群中应用的资源调度支持;Hive提供数据访问支持。

模块名称:(实际使用了哪些模块都要在这里体现出来,并要有描述)

数据存储模块:

数据存储在HDFS中

数据计算模块:

使用hive对表数据进行分析计算

.

准备工作

数据介绍:共两份数据:航班数据及机场数据。

不同年份的航班信息数据,此处以2000年的数据2000.csv为例,字段及说明如下表:

航班信息数据介绍:

Name Description 字段描述

1 Year 1987-2008 此飞行记录所属年份

2 Month 1~12 此飞行记录所属月份

3 DayofMonth 1~31 此飞行记录所属当月的第几天

4 DayOfWeek 1 (Monday) - 7 (Sunday) 此飞行发生在本周第几天

5 DepTime actual departure time (local, hhmm) 实际飞离机场时间(小时分钟,如1940表示19点40分)

6 CRSDepTime scheduled departure time (local, hhmm) 计划分离机场时间(小时分钟,如1940表示19点40分)

7 ArrTime actual arrival time (local, hhmm) 实际抵达机场时间(小时分钟,如1940表示19点40分)

8 CRSArrTime scheduled arrival time (local, hhmm) 计划抵达机场时间(小时分钟,如1940表示19点40分)

9 UniqueCarrier unique carrier code 航空公司代码

10 FlightNum flight number 航班号

11 TailNum plane tail number 机尾编号

12 ActualElapsedTime in minutes 航程实际耗时(单位分钟)

13 CRSElapsedTime in minutes 航程计划耗时(单位分钟)

14 AirTime in minutes 飞机空中飞行时长(单位分钟)

15 ArrDelay arrival delay, in minutes 抵达晚点时长(单位分钟)

16 DepDelay departure delay, in minutes 出发延误时长(单位分钟)

17 Origin origin IATA airport code 出发所在机场编号(国际航空运输协会指定)

18 Dest destination IATA airport code 抵达机场编号(国际航空运输协会指定)

19 Distance in miles 航程(单位英里)

20 Cancelled was the flight cancelled? 航班是否取消

21 CancellationCode reason for cancellation (A = carrier, B = weather, C = NAS, D = security) 航班取消代码

22 Diverted 1 = yes, 0 = no 是否改道(1是,0否)

23 WeatherDelay in minutes 天气原因延迟

24 SecurityDelay in minutes 安全原因延迟

机场数据:数据介绍:

iata 国际航空运输协会代码

airport 机场

city 城市

state 州

country 国家

lat 纬度

long 经度

数据采集

由于本案例采集的获取数据的手册并非是大数据行业中常用的数据采集方案,与大数据相关性不大,所以此案例直接提供采集下来的数据,供案例使用。

数据清洗

航空数据集和机场数据中存在一些不合理的数据,需要对这部分做清洗,清洗后的结果留待接下来的操作中使用。

数据存储

本案例的重点是数据分析,此部分可以自己使用传统的JDBC方式存在到关系型数据库中。

数据计算

数据计算即是数据分析,本案例中对机场数据及航班数据进行分析,得出各项指标。数据计算常用手段有MapReduce, Hive,等等,本案例选择使用hive进行数据分析。具体的数据分析请见实验手册。

数据可视化

隐藏此模块。

开始实验

介绍:主要分两部分,第一部分是实验环境的准备,包括“hadoop集群安装部署”;第二部分是真正的数据分析部分。


相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
3月前
|
SQL 存储 分布式计算
ODPS技术架构深度剖析与实战指南——从零开始掌握阿里巴巴大数据处理平台的核心要义与应用技巧
【10月更文挑战第9天】ODPS是阿里巴巴推出的大数据处理平台,支持海量数据的存储与计算,适用于数据仓库、数据挖掘等场景。其核心组件涵盖数据存储、计算引擎、任务调度、资源管理和用户界面,确保数据处理的稳定、安全与高效。通过创建项目、上传数据、编写SQL或MapReduce程序,用户可轻松完成复杂的数据处理任务。示例展示了如何使用ODPS SQL查询每个用户的最早登录时间。
220 1
|
3月前
|
消息中间件 监控 数据可视化
大数据-79 Kafka 集群模式 集群监控方案 JavaAPI获取集群指标 可视化监控集群方案: jconsole、Kafka Eagle
大数据-79 Kafka 集群模式 集群监控方案 JavaAPI获取集群指标 可视化监控集群方案: jconsole、Kafka Eagle
141 2
|
1月前
|
机器学习/深度学习 人工智能 运维
智能化运维:AI与大数据在IT运维中的应用探索####
本文旨在探讨人工智能(AI)与大数据分析技术如何革新传统IT运维模式,提升运维效率与服务质量。通过具体案例分析,揭示AI算法在故障预测、异常检测及自动化修复等方面的实际应用成效,同时阐述大数据如何助力实现精准运维管理,降低运营成本,提升用户体验。文章还将简要讨论实施智能化运维面临的挑战与未来发展趋势,为IT管理者提供决策参考。 ####
|
2月前
|
机器学习/深度学习 存储 大数据
云计算与大数据技术的融合应用
云计算与大数据技术的融合应用
|
3月前
|
存储 分布式计算 druid
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
84 1
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
|
2月前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
ly~
|
3月前
|
供应链 搜索推荐 安全
大数据模型的应用
大数据模型在多个领域均有广泛应用。在金融领域,它可用于风险评估与预测、智能营销及反欺诈检测,助力金融机构做出更加精准的决策;在医疗领域,大数据模型能够协助疾病诊断与预测、优化医疗资源管理和加速药物研发;在交通领域,该技术有助于交通流量预测、智能交通管理和物流管理,从而提升整体交通效率;电商领域则借助大数据模型实现商品推荐、库存管理和价格优化,增强用户体验与企业效益;此外,在能源和制造业中,大数据模型的应用范围涵盖从需求预测到设备故障预测等多个方面,全面推动了行业的智能化转型与升级。
ly~
294 2
ly~
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
大数据在智慧金融中的应用
在智能算法交易中,深度学习揭示价格波动的复杂动力学,强化学习依据市场反馈优化策略,助力投资者获取阿尔法收益。智能监管合规利用自然语言处理精准解读法规,实时追踪监管变化,确保机构紧跟政策。大数据分析监控交易,预警潜在违规行为,变被动防御为主动预防。数智化营销通过多维度数据分析,构建细致客户画像,提供个性化产品推荐。智慧客服借助 AI 技术提升服务质量,增强客户满意度。
ly~
178 3
ly~
|
3月前
|
供应链 搜索推荐 大数据
大数据在零售业中的应用
在零售业中,大数据通过分析顾客的购买记录、在线浏览习惯等数据,帮助零售商理解顾客行为并提供个性化服务。例如,分析网站点击路径以了解顾客兴趣,并利用历史购买数据开发智能推荐系统,提升销售和顾客满意度。此外,大数据还能优化库存管理,通过分析销售数据和市场需求,更准确地预测需求,减少库存积压和缺货现象,提高资金流动性。
ly~
588 2
ly~
|
3月前
|
供应链 监控 搜索推荐
大数据的应用场景
大数据在众多行业中的应用场景广泛,涵盖金融、零售、医疗保健、交通物流、制造、能源、政府公共服务及教育等领域。在金融行业,大数据用于风险评估、精准营销、反欺诈以及决策支持;零售业则应用于商品推荐、供应链管理和门店运营优化等;医疗保健领域利用大数据进行疾病预测、辅助诊断和医疗质量评估;交通物流业通过大数据优化物流配送、交通管理和运输安全;制造业则在生产过程优化、设备维护和供应链协同方面受益;能源行业运用大数据提升智能电网管理和能源勘探效率;政府和公共服务部门借助大数据改善城市管理、政务服务及公共安全;教育行业通过大数据实现个性化学习和资源优化配置;体育娱乐业则利用大数据提升赛事分析和娱乐制作水平。
ly~
900 2

热门文章

最新文章